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ABSTRACT

Vascular remodeling is a common pathological process in cardiovascular diseases and includes changes in
cell proliferation, apoptosis and differentiation as well as vascular homeostasis. Mechanical stresses, such as
shear stress and cyclic stretch, play an important role in vascular remodeling. Vascular cells can sense the
mechanical factors through cell membrane proteins, cytoskeletons and nuclear envelope proteins to initiate
mechanotransduction, which involves intercellular signaling, gene expression, and protein expression to
result in functional regulations. Non-coding RNAs, including microRNAs and long non-coding RNAs, are
involved in the regulation of vascular remodeling processes. Mechanotransduction triggers a cascade
reaction process through a complicated signaling network in cells. High-throughput technologies in
combination with functional studies targeting some key hubs and bridging nodes of the network can enable
the prioritization of potential targets for subsequent investigations of clinical translation. Vascular
mechanobiology, as a new frontier field of biomechanics, searches for principles of stress-growth in
vasculature to elucidate how mechanical factors induce biological effects that lead to vascular remodeling,
with the goal of understanding the mechanical basis of the pathological mechanism of cardiovascular
diseases at the cellular and molecular levels. Vascular mechanobiology will play a unique role in solving the
key scientific problems of human physiology and disease, as well as generating important theoretical and
clinical results.

Keywords: mechanobiology, vascular remodeling, cardiovascular disease, mechanotransduction,
endothelial cell, vascular smooth muscle cell, nuclear envelope, microRNA

INTRODUCTION

Cardiovascular disease is one of the most serious

volves the flow of blood, deformation of blood cells
and blood vessels, and interaction between blood
and vessels, which comprise the rich mechanical

health hazards. Elucidation of the pathogenesis of . o ) )
mechanisms. Many clinical and experimental studies

cardiovascular disease for its prevention is a major : ) ; i
. ) . . have demonstrated that biological, chemical, physi-

field of biomedical research [1]. Cardiovascular dis- '
. . . . cal, and other factors affect the vascular remodeling
orders, including hypertension, atherosclerosis and "’ R ) i
in vivo and in vitro, in which mechanical factors play a
direct and important role. We have selected vascular

remodeling as a starting point to explore some com-

stroke, are essentially vascular diseases. They have
a common pathogenic mechanism and basic patho-

logical process, i.e., vascular wall remodeling, which
ogca P o S & mon modes of pathogenesis for the complex char-
includes cardiovascular cell migration, hypertrophy, o ; . ] ]
. . . ] acteristics of multi-gene, multi-pathogenic factors in
proliferation and apoptosis, as well as changes in ) )
. cardiovascular diseases.
cell phenotype, morphological structure and func-

tion [2].
The human body exists in a mechanical environ-

Biomechanics studies the deformation and
movement of living entities, through the organic

ment, which influences the biological processes at Cf)mbination of Abiological and Tnechanical prin-
every level, including the whole body, organs, tis- ciples, to recognize the laws of life processes and
sues. cells a’n dmolecules. The car diovas,cular s ; tem solve scientific issues in the field of life and health.
: ' lé Y. C. Fung proposed the stress-growth law in his

monograph Biomechanics: Motion, Flow, Stress,
and Growth in 1990, which states that remodeling

can be considered a mechanical system in which the
central position is occupied by the heart, which func-
tions as a mechanical pump. Blood circulation in-
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of a blood vessel involving growth or resorption
of cell and extracellular materials is linked to
stress in the vessel [3]. The stress-growth law is
a fundamental theory that expounds the intrinsic
relationship between the most basic form of matter
movement, mechanical motion, and the highest
form, life motion, and guides the transformation of
biomechanics from mechanics applied to biology to
the organic bond of mechanics with biological pro-
cesses. A qualitative change and the development
of biomechanics are observed. Mechanobiology, as
a new frontier field of biomechanics, has increased
with response to proper timing and conditions.
Mechanobiology encompasses several broad re-
search areas and searches for the effects of the
mechanical environment in health, disease or injury,
mechanosensitive responses and their mechanisms,
inter-relations between mechanics and biological
processes, such as growth, adaption, remodeling,
and repair, and discoveries related to new diagnostic
and therapeutic procedures [4,5]. These studies are
of great theoretical and practical significance for our
understanding of the mechanical mechanisms and
natural laws of growth and senility of the human
system, expounding pathological mechanisms of
diseases, and researching and developing new
medicines and technologies for medicine.

Vascular mechanobiology elucidates the princi-
ples of stress-growth in the vasculature, as well as
how mechanical factors induce biological effects to
result in vascular remodeling to elucidate the me-
chanical basis of blood circulation and the natural
laws of growth and senility of the vasculature and to
expound the pathological mechanism of cardiovas-
cular diseases on cellular and molecular levels.

VASCULAR CELLS RESPOND TO
MECHANICAL STRESSES

The blood vascular wall has three mechanical force
loadings, i.e., shear stress (SS), normal and circum-
ferential stresses. SS, which acts parallel to the lumi-
nal surface of the vessel, is an outcome of fluid viscos-
ity and the velocity gradient between adjacent lay-
ers of the flowing blood [1,6,7]. The circumferential
stress acts along the vessel wall perimeter to cause
stretching, resulting in corresponding deformation
of the vessel wall, which is termed the circumferen-
tial strain.

Vascular cells respond to mechanical stresses
such as SS and stretch, which can be sensed by cells,
by regulating the cell signaling pathway, affecting
gene expression and influencing cell functions as a
result [6-8]. Through various means, the cells trans-
form the exocytic mechanical signal into an intra-

cellular signal, and then trigger the cascade reaction
process, which is known as mechanotransduction.

Roles of the cell membrane and
cytoskeletons in mechanotransduction

Multiple mechanosensors in the vascular cell
membrane have been reported, including integrins
[9-18], ion channels [19-28], junctional proteins
[29-32], growth factor receptors [29], receptor ty-
rosine kinases (RTKs) [33,34], G protein-coupled
receptors (GPCRs) [35-39], platelet/endothelial
cell adhesion molecule-1 (PECAM-1) [40,41], and
caveolae [37,38,42], as well as membrane lipids
[43,44], glycocalyx [45-50], and primary cilia
[51,52].

The above-mentioned mechanosensors are on
or in the vascular cell membrane. However, in
the endothelium, the interconnected cytoskeletal
filaments are also linked to membrane proteins in
every part of the cell. The cytoskeleton is made up
of actin filaments, microtubules and intermediate
filaments, providing elastic stiffness and maintaining
the shape and structure of a cell to enable specific
cellular functions [53]. Different cytoskeletal
networks have interpenetration and interactions,
which combined with specific cross-linking, have an
effect on the cellular overall mechanical response.
In response to shear stress, AMP-activated protein
kinase (AMPK) phosphorylation of cortactin,
followed by sirtuin 1 (SIRT1)SIRT1 deacetyla-
tion, regulates the interaction of cortactin and
cortical-actin. This AMPK/SIRT1 co-regulated
cortactin-F-actin dynamics is need for a sub-cellular
translocation/activation of endothelial nitric oxide
synthase (eNOS) and is also atheroprotective [54].
There is ample evidence indicating that cytoskeletal
assembly and dynamics respond to different flow
patterns. Conceivably, mechanical stimuli acting
on the cell surface are transmitted to the cytoplasm
via cytoskeletal deformations such as intermediate
filament displacement or actin filament deforma-
tion. Direct observation of intermediate filament
displacement in cells expressing green fluorescent
protein has suggested that SS rapidly alters the
cytoskeletal mechanics. In addition to its structural
roles, the cytoskeleton also regulates gene tran-
scription through nucleocytoplasmic shuttling of
mechanosensitive transcriptional activators [SS].

Role of the cell nucleus in
mechanotransduction

A mechano-vascular proteomic study suggested that
the proteins of the nucleus envelope (NE) might
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Figure 1. Schematic diagram of the roles of nuclear envelope proteins in vascular mechanotransduction. (a) A schematic diagram of the putative
signaling pathways involved in the effects of nuclear envelope proteins on EC or VSMC functions in response to mechanical stimuli. (b) Low SS represses
the expressions of nesprin2 and lamin A, which impacts the activation of transcription factors AP-2, TFIID and Stat1, 3, 5, 6, regulates the mRNA levels
of their downstream target genes, and then induces the proliferation and apoptosis of ECs. (c) Pathological cyclic stretch suppresses the expression of
emerin and lamin A/C, which bind to specific motifs in the DNA segments, and decreases the binding of emerin to the promoter regions of E2F1, IRF1,
KLF4 and SP1, and the binding of lamin A/C to the promoter regions of E2F1, IRF1, KLF4, KLF5, SP1 and STAT1, eventually inducing VSMC proliferation.

directly respond to mechanical stimuli and regulate
gene expression afterwards [ 56]. All these molecules
are implicated in mechanotransduction of SS and
subsequently result in endothelial cell (EC) func-
tional responses, e.g., proliferation, apoptosis, migra-
tion and permeability.

The nucleus is the stiffest and largest sub-cellular
organelle in most cells, playing an important role in
storing and managing genetic information and serv-
ing as the site for DNA and RNA synthesis, tran-
scription processing, and coordinating the intricate
cellular architecture. Consisting of two lipid bilay-
ers, namely the inner and outer nuclear membranes
(INM and ONM), NE is the physical barrier be-
tween the cytoplasm and genome, and ONM is an
extension of the rough endoplasmic reticulum (ER)
and is connected to INM at the nuclear pore com-
plex (NPC). INM and ONM delineate the periplas-
mic space, which is continuous with the ER lumen.
INM proteins interact directly with the nuclear lam-
ina, a specialized meshwork of lamins that constitute
the type V intermediate filament family. The INM
and ONM are perforated by NPCs that control traf-
fic in and out of the nucleus. NPCs mediate the ex-
change of different sizes of molecules between the
nucleoplasm and cytoplasm, which act as gatekeep-
ers of the nucleus (Fig. 1a).

Compared with the cytoplasm, the role of nuclear
mechanotransduction in gene regulation is much
less well understood. The cytoskeleton is the major
cellular determinant of the physical and mechani-
cal properties, which mediates cellular responses to
various environmental cues from the surroundings.
Cytoskeletal polymers, including actin filaments,
microtubules and intermediate filaments, can con-
nect to the NE through linkers of nucleoskeleton

and cytoskeleton (LINC) complexes and transmit
mechanical stresses into the nucleus [57]. Recently,
the role and function of LINC complexes have
gained attention for their involvement in connect-
ing the cytoskeleton to the nucleus to transduce me-
chanical stimuli throughout the cell.

LINC complexes, conserved from yeast to men,
are composed of both ONM and INM proteins that
belong to the Klarsicht, Anc-1, and Syne homology
(KASH) domain protein families, as well as Sadl
and UNC-84 (SUN) homology domain proteins
[58]. The acronym KASH originates from the con-
servation of the same domain in Klarsicht from D.
melanogaster, ANC-1 from C. elegans, and Syne ho-
mology from mammals. Most KASH domain pro-
teins reside in the ONM, and their amino-terminal
regions are exposed to the cytoplasm and are as-
sociated with the cytoskeleton, such as actin fil-
aments, microtubules, and intermediate filaments.
The carboxyl termini of KASH proteins contain the
KASH domain, which is a 30-amino-acid peptide
typically ending with the conserved motif PPPX or
PPPT. The N-terminus of KASH proteins extends
into the perinuclear space (PNS) and interacts with
the SUN domain of SUN proteins [59]. The SUN
domain was first defined as a domain of shared ho-
mology between Sadl in Schizosaccharomyces pombe
and UNC-84 in Caenorhabditis elegans. An amino-
terminal nucleoplasmic domain of SUN proteins in-
teracts with nuclear lamina and chromatin-binding
proteins. In contrast, a carboxyl-terminal region,
containing a conserved SUN domain, protrudes into
the PNS. The direct interactions of SUN proteins
and KASH proteins across the NE provide a core
link between the nucleoskeleton and the cytoskele-
ton. Thus, it is reasonable to assume that the LINC
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complex mediates mechanically induced signals
along the NE and then into the nucleus.

The human genome contains six genes encoding
KASH proteins. Four of them are nuclear envelope
spectrin-repeat proteins (nesprins1-4) [60]. Com-
pared with nesprin 4, nesprins 1-3 are widely dis-
tributed and predominantly mediate mechanotrans-
duction to the nucleus in most cells. Cells exposed
to a mechanical stimulus show altered cell signal-
ing and cytoskeletal organization leading to changes
in the cellular phenotype. The nucleus is also force-
responsive, and these mechano responses not only
affect nuclear functions, but also subnuclear struc-
tures and changes in subnuclear movement [61].
The functions of nesprins have been demonstrated in
cellular responses to mechanical force systems. For
instance, nesprinl knockdown increases the number
of focal adhesions and substrate traction while de-
creasing EC migration in response to cyclic strain,
resulting in abnormal adhesion and migration [62].
The physical link from the cytoskeleton to NE is
decisive for mechanotransduction. The disruption
of nesprin—-SUN complexes disrupts force transmis-
sion from the cytoskeleton to the nucleus, which
perturbs the mechanical control of cell differentia-
tion and abrogates their stretch-induced prolifera-
tion [63]. A recent study by Han et al. showed that
nesprin 2 is sensitive to the SS and regulates EC func-
tions. Under low S, the repressed nesprin 2 is cor-
related with increased proliferation and apoptosis of
ECs [64] (Fig. 1b).

SUN proteins are single-pass transmembrane
proteins localized in the INM. Both human and
mouse genomes encode at least six SUN proteins.
While SUN1 and SUN2 are widely expressed, SUN3
and SPAG4 appear to be limited in several tissue
types [65]. SUN proteins can also interact with
lamin B to mediate nuclear migration [66]. SUN1
ablation weakens the nucleoskeleton, leading to re-
duced force transmission to the nucleus [67]. Trans-
mission electron microscope (TEM) analysis has
revealed that nesprin 2 or lamin A knockdown re-
sults in degradation of the NE phospholipid bilayer,
suggesting that nesprin 2 and lamin A regulate NE
stability and nuclear structure [64]. Furthermore,
the organization of nuclei is disrupted in SUN 1/2
double-knockout mice.

The nuclear lamina, containing A-type lamins
(lamins A and C, encoded by the LMNA gene) and
B-type lamins (lamins B1 and B2, encoded by the
LMNBI and LMNB?2 genes), is linked to chromatin
and participates in gene transcription. B-type lamins
are broadly expressed. In contrast, A-type lamins,
which are expressed in all differentiated cell types,
participate in gene expression, cell signaling, high-
order chromatin organization, and nuclear archi-

tecture. The research on nuclear lamins has focused
on their regulation of nuclear architecture. New evi-
dence shows that A-type lamins and their associated
NE proteins are key regulators of mechanotrans-
duction. Han et al. reported that low SS suppresses
the level of lamin A in ECs, and this suppression
subsequently leads to EC dysfunction [64]. Down-
regulation of A-type lamins in ECs facilitates T cell
migration through EC layers, suggesting that the
regulation of EC nuclear stiffness by lamin A/C may
modulate subendothelial migration of blood-borne
immune cells, a key process of atherosclerosis [68].
Brosig et al. showed that expression of dominant
negative mutants of nesprin and SUN enhances
the transcriptional activity of NF«kB in C2C12
cells, suggesting that the degradation of nuclear
LINC complexes causes conformational changes in
chromatin structure and organization that modulate
transcription factor binding or transcriptional
processes [69]. In response to pathological cyclic
stretch, lamin A/C expression is depressed, which
ultimately increases the proliferation of vascular
smooth muscle cells (VSMCs) [70]. In addition,
lamin A is also involved in sensing forces generated
from cells within tissue during differentiation.
Matrix stiffness directly influences the lamin A
level, and lamin A transcription is modulated by the
vitamin A/retinoic acid (RA) pathway with broad
roles in development [71]. Lamin A in human cell
lines from tumor cells to primary mesenchymal stem
cells (MSCs) also contributes to migration [72].
Emerin is another ubiquitous integral membrane
protein that is localized in the INM and associates
with nesprin 1, 2, SUN1/2, and lamin A/C. Loss of
emerin brings about Emery—Dreifuss muscular dys-
trophy (EDMD), characterized by muscle weaken-
ing, and potentially lethal cardiac conduction system
defects. Emerin has a LEM-domain and therefore
binds to barrier-to-autointegration factor (BAF), a
conserved chromatin protein that is essential for
cell division. BAF conscribes emerin to chromatin
and regulates high-order chromatin structure dur-
ing nuclear assembly. Most studies on emerin focus
on skeletal muscle and myocardium, while little re-
search has been conducted on VSMCs. Recent re-
sults indicate that emerin and lamin A/C bind to the
respective sequencing-specific motifs of transcrip-
tion factors to modulate the hyperstretch-induced
dysfunction of VSMCs [70] (Fig. 1c). Combined
with these results, it has been suggested that ne-
sprin 2, lamin A/C, and emerin modulate the pro-
liferation of ECs and VSMCs in arterial walls in
response to cyclic strain and SS associated with hy-
pertension. Other studies have shown that MRTE-
A, a cardiomyocyte-related mechanically sensitive
transcription factor, plays an important role in
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cardiac development. The reduction in lamin A/C
and emerin reduces the viability of the nucleus and
cytoskeletal microfilaments and results in a decrease
in the activity of the transcription factor MRTEF-A
and suppression of its translocation [73]. This re-
sult also shows that lamin A/C and emerin-induced
changes in the nuclear structure can directly affect
gene regulation. On the other hand, nuclear skele-
ton elements can also interact directly with chromo-
somes or multiple transcriptional regulators. For ex-
ample, lamin A/C binds to pRb, c-Fos and ERK1/2
[74], whereas emerin interacts with 8-catenin, BAF
and GCL [75]. These results suggest that the struc-
ture of the nucleus, plasticity, and mechanical trans-
mission between the nucleus and the skeleton play
important roles in the intracellular signal transduc-
tion pathways.

In recent years, several new processes associated
with nuclear membrane remodeling have been re-
ported, including NE repair after rupture and NE
autophagy. Despite major progress made in nuclear
mechanotransduction sensors, many other ques-
tions remain to be studied, such as whether the
DNA binding of NE proteins modulated by mechan-
ical forces is direct or other complexes are involved,
whether LINC complex defects could be mainly at-
tributed to changes in the pre-stress state of the
cell and how various NE proteins interact with each
other. The network of mechanotransduction in the
nucleus and the NE proteins involved require further
study.

MECHANOTRANSDUCTION NETWORK
BASED ON HIGH-THROUGHPUT
BIOTECHNOLOGY

Mechanotransduction initiates the cascade reaction
process through a complicated signaling network in
cells. High-throughput biotechnology, such as pro-
teomics, phosphoproteomics, genomics, and tran-
scriptomics, among others, can provide enormous
amount of data for bioinformatics and/or system
biology analyses to reveal key genes or proteins in
the regulatory network. These key hubs and bridging
nodes of the network can enable the prioritization
of potential targets for subsequent validation exper-
iments for clinical translation [56,76,77].

ECs and VSMCs are the major cellular con-
stituents of the vessel wall. The interactions,
crosstalk and synergy between VSMCs and ECs
play a critical role in vascular biology in health
and disease. ECs in the intima of the arterial wall
are exposed to SS constantly, and then transduce
the mechanical stimuli to intracellular signals
[6,10]. ECs induce gene expressions of PDGF-AA,
PDGF-BB and TGFB in co-cultured VSMCs

[78], and SS regulates the migration, apoptosis,
proliferation and gene expressions of VSMCs in
an EC-dependent manner [79-81]. SS modulates
the EC phenotype, with subsequent alterations
in the release of pro-inflammatory cytokines, as
well as VSMC proliferation, apoptosis and gene
expressions [82,83].

With the use of a systemic biological approach
encompassing high-throughput screening, bioinfor-
matics analysis and biological validation, a vascular
cell mechanotransduction network has been estab-
lished [56]. Using proteomic analysis, the protein
profiles of rat aorta cultured under low shear stress
(LSS, 5 dyn/cm?) and normal shear stress (NSS,
15 dyn/cm?*) were compared (Fig. 2a). The differ-
ential expressed proteins were analyzed by Inge-
nuity Pathway Analysis (https://analysis.ingenuity.
com/pa/installer/select). A signaling network that
is highly associated with mechanotransduction ex-
erted by LSS, involving platelet-derived growth fac-
tor BB (PDGF-BB), transforming growth factor
betal (TGFf1), lamin A, lysyl oxidase (LOX),
and extracellular signal-regulated kinases 1/2 (ERK
1/2), was revealed (Fig. 2b). The network mediating
LSS-induced migration and proliferation of ECs and
VSMCs and the cross-talk between these two cell
types was investigated in a co-cultured system in a
parallel-plate flow chamber (Fig. 2¢). In comparison
to NSS, LSS upregulates migration and proliferation
of ECs and VSMCs, and increases the production
of PDGF-BB and TGFS1. Additionally, PDGF-BB
recombinant protein shows an effect similar to LSS
on ECs and VSMCs. In contrast, TGFS1 recombi-
nant protein has a similar effect on ECs to PDGF-BB,
but not on VSMCs. When PDGF-BB expression is
‘knocked down’ in ECs, the effects of LSS are mit-
igated or abolished, and this effect is also blocked
by pre-incubation of VSMCs with PDGF-BB neu-
tralized antibody. TGFf1 ‘knockdown’ in ECs and
neutralizing antibody pre-incubation with VSMCs
mitigates the EC responses to LSS but has no ef-
fect on VSMCs. These results suggest that ECs re-
spond to LSS stimuli by upregulating PDGF-BB and
TGFp1. However, these two growth factors play
different roles in LSS-induced vascular remodeling.
‘While PDGF-BB is involved in the paracrine control
between ECs and VSMCs, TGF 1 takes part in the
feedback control from VSMCs to ECs [56].

Over at least the last two decades, molecular and
cell biology approaches have been used to research
the roles and involvement of multiple molecules in
mechanotransduction. Most, if not all, of these stud-
ies focus on the level of the single molecule and/or
pathway. To date, information regarding mechan-
otransduction in cardiovascular cells at the sys-
temic level is largely lacking, resulting in difficulties
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(c) Verifying the network by the parallel-plante flow chamber for
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Figure 2. Schematic drawing outlining the vascular cell mechanotransduction network based on mechano-vascular proteomics. (a) 2D electrophoresis
(2DE) gels of aorta cultured under different shear stresses. The protein profiles of rat aorta cultured under NSS (15 dyn/cm?) and LSS (5 dyn/cm?)
are compared by using comparative proteomic techniques, 2DE and MALDI-TOF mass spectrometry. (b) IPA reveals a potential mechanotransduction
network. Differentially expressed proteins are analyzed by IPA and a signaling network that is highly correlated with mechanotransduction of LSS,

involving PDGF-BB, TGFA1, lamin A, LOX and ERK 1/2.

(c) Validation of the network by the parallel-plate flow chamber (left panel) for the co-culture

model of ECs and VSMCs in vivo. In the EC/VSMC co-culture parallel-plate flow chamber, ECs and VSMCs are grown on opposite sides of a 10-m-thick
polyethylene terephthalate (PET) membrane, and the ECs are subjected to SS. The interactions of ECs and VSMCs are able to occur through 0.4-pum
diameter PET membrane pores. Using this system, the expressions of molecules involved in the networks, namely, PDGF-BB, TGFA1, lamin A, LOX and
phospho-ERK1/2, and the migration and proliferation of ECs and VSMCs separately under two levels of shear stress at 5 and 15 dyn/cm? are studied.

elucidating the complex

regulatory mechanisms of ~ networked approaches fora wide variety of biomedi-

cells in response to stresses in a comprehensive
manner. Recent advancement in high-throughput
technology, such as ‘omics’ experiments, have fa-
cilitated comprehensive, systematic, dynamic and

cal research. Itis expected that such high-throughput
technology will also be used in the near future to
explore life phenomena, reveal the pathogenesis of
diseases and search for drug targets.
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Although based on the concept of proteomics
and networks, scholars have conducted a large
amount of research investigating vascular tissue/cell
regulatory mechanisms during vascular remodeling,
which is involved in a variety of proteins and a
very complex and dynamic regular network, but the
available research still does not describe the cell
mechanotransduction network synthetically. Re-
search examining modification-related proteomics
after translation is in its infancy. Dynamic and quan-
titative analysis of the full spectrum and large-scale,
high-flux studies examining protein modification af-
ter translation remains a problem that must be
solved in the future. Furthermore, the verification
and functional analysis of mechanotransduction in
the context of vascular biology as well as the intracel-
lular mechanical stress signal transduction network
established by existing data are far from complete.
A more efficient and accurate new theory, algorithm
and software based on high-throughput technolog-
ical data remain to be established. Research on the
above issues seems likely to be an important frontier
in the study of vascular mechanobiology.

MECHANOREGULATION OF NON-CODING
RNAS IN VASCULAR REMODELING

Non-coding RNAs (ncRNAs) are functional RNAs
that are not translated into proteins. This new class of
RNAs is functionally involved in the epigenetic reg-
ulations of gene expression, and ncRNAs are ubig-
uitously present in animals and plants as well as
fungi [84,85]. Increasing evidence has revealed that
ncRNAs participate in the regulation of various bi-
ological processes, e.g., metabolism, development,
cell differentiation, proliferation and apoptosis, cell,
oncogenesis, and vascular homeostasis [84-87].

Non-coding RNAs include microRNAs (miR-
NAs), long non-coding RNAs (long ncRNAs;, IncR-
NAs), small interfering RNAs (siRNAs), piwi-
interacting RNAs (piRNAs), and small nucleolar
RNAs (snoRNAs) [85,88]. Little is known about
the roles of siRNAs, piRNAs and snoRNAs in the
cardiovascular system, let alone their engagement in
mechanotransduction, which may provide new re-
search opportunities.

IncRNAs are defined as non-protein-coding tran-
scriptslonger than 200 nucleotides [89]. Atleast sev-
eral thousand IncRNAs likely exist in the mammalian
genome. It appears that only one-fifth of transcrip-
tion across the human genome is involved in protein-
coding genes, showing at least four times more IncR-
NAs than protein-coding RNAs [90]. As epigenetic
regulation mechanisms of IncRNAs have gained am-
ple attention in research, new efforts show that shear

stress regulates the expression of candidate IncRNAs
in ECs, which in turn regulates downstream met-
alloprotease AMZ2 expression via IncRNA bind-
ing to the repressive chromatin mark H3K27me3
[91]. Yao and colleagues found that 68 IncRNAs and
255 mRNAs are up-modulated in the aorta of spon-
taneously hypertensive rats, whereas 167 IncRNAs
and 272 mRNAs are downregulated [92]. Moreover,
15% cyclic strain increases IncRNA XR007793 ex-
pression. XR007793 knockdown attenuates VSMC
proliferation and migration and inhibits signal trans-
ducers and activators of transcription 2 (stat2), LIM
domain only 2 (Imo2) and interferon regulatory fac-
tor 7 (irf7) [92]. IncRNA n342419, termed MAN-
TIS, is downregulated in patients with idiopathic
pulmonary arterial hypertension (IPAH), whereas it
isupregulated in the carotid arteries of Macaca fascic-
ularis subjected to an atherosclerosis regression diet
as well as in ECs isolated from glioblastoma patients
[93]. Given the variety of epigenetic mechanisms
regulated by IncRNA, it is anticipated that IncRNA
regulation of vascular remodeling in response to me-
chanical stimuli will generate fruitful results.

Mechanoregulation of miRNAs in
vascular remodeling

miRNAs are endogenous, non-coding and single-
stranded RNAs of 18-22 nucleotides that consti-
tute a novel class of gene regulators [94]. miRNAs
bind to the 3'-untranslated regions (3-UTRs) of
their target mRNAs, leading to direct degradation of
mRNA or translational repression by a perfect com-
plement in plant cells or imperfect complement in
animal cells [94]. The roles of miRNAs in vascu-
lar development and diseases have been studied in-
tensively [95,96]. As the changes of cell phenotype,
migration, proliferation, hypertrophy and apoptosis,
among others, are major events involved in vascular
remodeling, very many miRNAs have been shown to
regulate these events in the context of mechanoreg-
ulation. In the following sections, we review recent
findings related to miRNAs in mechanobiology with
an emphasis on shear stress effects on ECs and me-
chanical stretch effects on VSMCs.

Shear stress

Shear stress (SS) exertion on ECs plays significant
roles in regulating vascular homeostasis and patho-
physiology [6,7]. Laminar SS regulates the expres-
sion of miR-126, vascular cell adhesion molecule
1 (VCAM-1), and syndecan-4 (SDC-4) in ECs
[97]. miR-126 is increased during long-term expo-
sure to flow and shows a crosstalk between ECs
and VSMCs in response to SS, which is mediated
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through miR-126 [97,98]. Co-culture of VSMCs
with ECs or treatment of VSMCs with conditioned
medium from static EC monoculture (EC-CM) in-
creases miR-126 level in VSMCs with concomitant
suppression of FOXO3, BCL2 and IRS1 mRNAs
and VSMC turnover. These effects are abolished by
either inhibition of endothelial miR-126 or the ap-
plication of laminar SS to ECs. Consistently, deple-
tion of miR-126 in mice inhibits neointimal forma-
tion of carotid arteries resulting from cessation of
blood flow [98].

In response to laminar SS, miR-23b is induced
by the transcription factor Kriippel-like factor 2
(KLF2) [99,100]. Laminar SS also results in the
expression of miR-19a, which directly targets cy-
clin D1, leading to cell cycle arrest at G1/S tran-
sition. Thus, miR-19a would be a key regulator
of cell cycle progression in response to laminar
SS [101]. SS induces expression of miR-30 fam-
ily members in a KLF2-dependent manner [102].
miR-101 expression is also significantly upregulated
in human umbilical vein ECs (HUVECs) exposed
to laminar SS at 12 dyn/cm”. miR-101 targets a
mammalian target of rapamycin (mTOR), which
in turn causes cell cycle arrest at the G1/S transi-
tion and thus suppresses EC proliferation [103]. Co-
culturing ECs with VSMCs under static conditions
causes initial increases in miR-146a, -708, -451, and
-98 in ECs. SS (12 dyn/cm?) applied to co-cultured
ECs for 24 h augments the expression of these
four anti-inflammatory miRNAs [104]. These four
anti-inflammatory miRNAs are highly expressed in
neointimal ECs in injured arteries under physiolog-
ical flow rather than flow stagnation. Decreased ex-
pression of miR-146a can accelerate neointima for-
mation of injured rat carotid artery under physio-
logical flow while overexpression in miR-146a in-
hibits neointima formation in the rat or mouse
[104].

Under disturbed flow, the expression of
miR-21 is induced in HUVECs [105,106]. Os-
cillatory SS induces AP-1-dependent miR-21
expression, which directly targets peroxisome
proliferator-activated receptor & (PPARx) mRNA,
thereby increasing the expression of VCAMI1 and
C-C motif chemokine 2/monocyte chemoattractant
protein 1 (CCL2/MCP1) to promote adhesion
of monocytes to ECs. Oscillatory SS induction
of miR-21 is a positive feedback loop that in-
creases the pro-inflammatory responses of vascular
endothelium [106]. Oscillatory SS also induces
miR-663 expression in cultured HUVECs [107].
The disturbed flow also induces the expression of
miR-712, which promotes endothelial inflammation
and increases endothelial permeability, resulting in
a pro-atherogenic phenotype [108].

The expression of miR-126-Sp is increased in
atheroprone areas in a KLF2-dependent manner.
The inhibition of miR-126-5p, but not miR-126-3p,
recapitulates the effects of pri-miR-126a knockout,
which increases the area of the atherosclerosis lesion,
promotes macrophage infiltration, and decreases en-
dothelial repair in mice [109]. On the other hand,
miR-10a is drastically decreased in the disturbed
flow area under arterial tress, when compared to
the laminar flow area. The NF-«B pathway is acti-
vated and NF-« B target genes are upregulated when
miR-10a is inhibited in ECs in vitro [110], show-
ing that the absence of miR-10a in the disturbed
flow area causes ECs to be susceptible to inflamma-
tion [111]. Interestingly, miR-10a exhibits the low-
est expression level among all the examined shear-
responsive miRs in ECs under oscillatory SS [112].
In terms of the regulatory mechanism, miR-10a ex-
pression is regulated by KLF2 through modulation
of RAR«-RARE binding, with consequent regula-
tion of GATA6/VCAM-1in ECs [112]. All these re-
sults indicate that miR-10a is downregulated in ECs
by disturbed flow via KLF2.

Atheroprone SS induces the expression of miR-
92a in concert with oxidized LDL treatment (ox-
LDL) in HUVECs [113-116]. As miR-92a targets
the 3’-UTR of KLF2 mRNA, atheroprotective lam-
inar flow downregulates miR-92a to induce KLF2
[114]. Interestingly, blockade of miR-92a expres-
sion in Ldlr~/~ mice restores endothelial function
and decreases atherosclerosis [115]. The expression
of miR-34 is upregulated by both pS53 and oscil-
latory SS [117]. Blockade of endogenous miR-34a
decreases the expression of VCAM-1 and intercel-
lular adhesion molecule-1 (ICAM-1) in ECs. Con-
versely, miR-34a overexpression increases the level
of VCAM-1 and ICAM-1, which promotes mono-
cyte adhesion to ECs [118]. Furthermore, laminar
SS increases miR-34a expression levels in human
umbilical cord blood-derived endothelial progeni-
tor cells (EPCs). An inverse correlation of miR-34a
and Foxj2 expressions is involved in the endothe-
lial differentiation of EPCs [ 119]. These results indi-
cate that miR-34a is amechanosensitive miRNA that
may have distinct functions in ECs versus EPCs. In
addition to the abovementioned miRNAs, there is a
panel of SS-sensitive miRNAs that regulate various
aspects of endothelial biology.

Cyclic stretch

VSMCs in a vascular medium are loaded with
cyclic circumferential strain, i.e., cyclic stretch. Song
et al. reported that an elevated stretch (16% elonga-
tion, 1 Hz) increases miR-21 expression in cultured
human aortic smooth muscle cells (HASMCs),
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whereas a moderate stretch (10% elongation, 1 Hz)
decreases expression. Because miR-21 is involved in
HASMC proliferation, the complex of miR-21 and
programmed cell death protein 4 (PDCD4) regu-
lates stretch-induced apoptosis [ 120]. Cyclic stretch
also modulates the VSMC phenotype through sev-
eral other miRNAs. In VSMCs of the portal vein,
the stretch-induced mRNA expression of contrac-
tile markers is reduced in the absence of miR-
143/14S [121]. In stretched portal veins and in
pressurized carotid arteries, the expression of miR-
144/451 is downregulated, which is inversely cor-
related with the expression and phosphorylation of
AMPK [122]. In human aortic VSMCs cultured on
collagen I, 16% stretch suppresses miR-145 expres-
sion in connection with reduced expression of con-
tractile markers of VSMCs. miR-145 overexpression
can partially recover the expression of these mark-
ers in the stretched cells. Furthermore, the stretch-
activated extracellular signal-regulated kinase 1/2
(ERK1/2) and upregulated angiotensin-converting
enzyme (ACE) account for the inhibition of miR-
145 expression [123]. VSMCs exposed to physi-
ological waveforms differentiate further compared
with those under static or sinusoidal cyclic strain.
Increased expression of miR-143, -145, and VSMC
markers desmin, calponin and SM-22 are found in
these more differentiated cells. Uniform dynamic
stretch not only increases the expression level of
miR-143 and -14S, but also increases that of miR-
221 [124].

Once a vein graft is transplanted into the arterial
system, such as a saphenous vein in a coronary artery
bypass graft, the transplanted vessels are exposed
to the arterial mechanical environment. Arterialized
cyclic stretch will affect VSMC functions in the
grafted veins, including excessive proliferation and
migration, which causes neointima formation and
ultimately leads to vein graft failure. Huang et al.
reported a novel mechanism by which miR-33 me-
diates mechanical stretch-induced venous VSMC
proliferation and neointimal hyperplasia. Thus, miR-
33 targeting might be a novel therapeutic strategy to
prevent vein graft failure and neointimal hyperplasia
[125]. Embedded in the intronic sequences of genes
encoding sterol regulatory element-binding proteins
(SREBPs), miR-33 has been shown to modulate
the proliferation of several cell types in vivo and in
vitro [126-128]. Huang et al. first reported that in
a graft vein rat model, neointimal hyperplasia and
cell proliferation is significantly increased (Fig. 3a).
Furthermore, miR-33 expression is decreased one,
two and four weeks post-grafting [125]. In contrast,
the expression of bone morphogenetic protein 3
(BMP3), a putative target of miR-33, and the phos-
phorylation of smad2 and smad$, which are poten-

tial downstream targets of BMP3, are all increased
in the grafted veins. While miR-33 mimics attenuate,
miR-33 inhibitors accelerate VSMC proliferation.
Moreover, recombinant BMP3 increases VSMC
proliferation and phospho-smad2 and -smadS
levels. By contrast, BMP3 siRNAs have the opposite
effect [125]. To explore the mechanism on a cellular
molecular level, venous VSMCs were exposed to
mimic arterial cyclic stretch by a cell stretch loading
system in vitro. The arterial stretch shows an increase
in proliferation and repression of miR-33 expres-
sion. Additionally, BMP3 expression and smad2
and smadS$ phosphorylation are enhanced (Fig. 3b).
Perivascular multi-point injection of agomiR-33 in
the graft vein rat model in vivo not only attenuates
BMP3 expression as well as smad2 and smad$ phos-
phorylation, but also clearly accelerates neointimal
formation and cell proliferation in the grafted veins
(Fig. 3c). These effects of agomiR-33 on grafted
veins can be reversed by local injection of BMP3
lentivirus [125].

Although the work by Huang et al. demonstrates
that miR-33 affects vein graft-induced neointimal
hyperplasia, a number of important questions re-
main unanswered, including the molecular mecha-
nism and mechanosensors that control miR-33 ex-
pression in response to arterial stretch of VSMCs
and vascular injury. Whether miR-33 is involved in
human vein graft adaptation would be another in-
teresting research topic. Interestingly, the human
genome encodes two miR-33 isoforms, namely,
miR-33a and miR-33b, which are, respectively, co-
expressed with SREBP2 and SREBP1 [129]. Thus,
additional studies using human samples or animal
models such as non-human primates that express
miR-33a and miR-33b will be important to trans-
late these findings to the intimal hyperplasia ob-
served in human vein grafts [126]. The mecha-
nism of miRNAs in mechanotransduction has not
been fully elucidated. Specifically, miRNA can reg-
ulate multiple target genes in the cell signaling
network, greatly influencing biological pathways,
cell functions and the dynamic balance of the ves-
sel wall. miRNA as a biomarker or therapeutic
target will be superior to the existing biomark-
ers or treatment drugs for cardiovascular disease
[130-133].

Therapies based on ncRNAs represent one of
new frontier in human disease treatment. There are
still many unknown areas in the research of ncR-
NAs under mechanotransduction. Multiple tran-
scriptional factors/co-activators/co-suppressors in-
volved in the regulation of miRNA expression
under mechanical regulation need to be eluci-
dated. The unknown area is not only a chal-
lenge but also an opportunity, and scientists and
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Figure 3. Schematic outlining the mechanobiological study of the roles of miRNAs and their target gene for exploring biomarkers. (a) Pathological
outcomes in an animal model /n vivo. Neointimal hyperplasia and cell proliferation are increased significantly, and miR-33 expression is decreased in
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clinicians need to work together to overcome the
difficulties.

SUMMARY AND PERSPECTIVES

Vascular remodeling is a common pathophysiologi-
cal process in cardiovascular diseases and mechano-
stimuli, including SS and cyclic strain, which are
critically important factors regulating vascular phys-
iology and pathology. Vascular cells, mainly ECs
and VSMCs, can sense the various forms of me-
chanical signals, transform them into intracellular
biochemical signals i.e., mechanotransduction, and
then initiate cascades of cellular responses that ulti-
mately regulate vascular functions (Fig. 4). Vascular
mechanobiology elucidates the molecular and cellu-
lar basis of responses in ECs and VSMCs under me-
chanical conditions. With the advancement of high-
throughput technologies, gene-editing methods and
computational biology, there are new and exciting
research opportunities in the area of mechanobi-
ology for researchers from different disciplines. An

improved understanding of mechanobiology in vas-
cular remodeling may facilitate the development of
novel therapeutic approaches targeting vascular im-
pairments. The potential targets include, but are not
limited to, mechanosensors, key proteins, miRNAs
and IncRNAs in ECs and VSMCs. Thus, identifica-
tion of these key molecules would be a priority in
subsequent investigations for clinical translation.
The core concept of the ‘stress-growth’ the-
ory is the interplay and synergism between the
mechanical micro-environment and chemical
micro-environment within cells. The results from
mechanobiology studies, including mechanical,
biochemical, cellular and molecular mechanisms,
will provide valuable information revealing the
major mechanical and chemical factors in the
organism. The mechanobiological study should
include the following: experimental approaches
using animal models (or clinical data) in vivo;
mechanistic studies at the cellular and molecular
level in vitro; validation using gene manipulation
approaches in disease models or model animals
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in vivo; further revalidation and implication using
clinical samples; and gradual achievement of clinical
transformation. This frontier field of research will
play a unique role in elucidating key scientific issues
in human physiology and disease, and produce
important theoretical and clinical findings.
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