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Multiscale models quantitying yeast physiology:

towards a whole-cell model

Hongzhong Lu, ' Eduard J. Kerkhoven, ! and Jens Nielsen @ 2

The yeast Saccharomyces cerevisiae is widely used as a cell factory and as an
important eukaryal model organism for studying cellular physiology related to
human health and disease. Yeast was also the first eukaryal organism for
which a genome-scale metabolic model (GEM) was developed. In recent years
there has been interest in expanding the modeling framework for yeast by incor-
porating enzymatic parameters and other heterogeneous cellular networks to
obtain a more comprehensive description of cellular physiology. We review the
latest developments in multiscale models of yeast, and illustrate how a new
generation of multiscale models could significantly enhance the predictive
performance and expand the applications of classical GEMs in cell factory
design and basic studies of yeast physiology.

Emergence of multiscale models for yeast

Being widely used as a microbial cell factory (see Glossary), metabolism in the yeast
Saccharomyces cerevisiae has been extensively studied and engineered with the purpose
of improving its properties. To this end, various types of computational models have
been leveraged to quantitatively characterize yeast physiology and to guide metabolic
engineering. Among these, genome-scale metabolic models (GEMs) have been
most widely used (Box 1). A benefit of this constraint-based modeling concept is that it
readily allows continuous model expansion when new experimental evidence becomes
available, and consequently GEMs for S. cerevisiae have been frequently updated with
more than 14 published versions between 2003 and 2019 [1,2], thereby typically yielding
improved model performance.

Even though GEMs are instrumental to investigate what the yeast metabolic network can achieve,
a drawback of such classical GEMs is that they only consider the stoichiometry of the metabolic
network. In reality, the fluxes through a metabolic network are constrained by many more aspects
that are by design neglected in classical GEMs, such as metabolic regulation caused by gene
expression and post-translational modifications, as well as information about enzymatic
properties defined, among others, by the protein 3D structures. Incorporating information
about these cellular processes and protein structures would allow integrative analysis of
multilayer omics data, thereby enabling the models to provide mechanical insight into the
basic principles of the regulation and evolution of complex cellular metabolism. This has been
recognized, and has resulted in the gradual development of multiscale models [3] through
the addition of enzyme kinetics, 3D structures, and heterogeneous networks into classical
GEMs, thereby laying the groundwork for holistic and accurate simulations of whole-cell behaviors.
As typical examples of multiscale models, metabolism and expression (ME)-models have
been reconstructed for Escherichia coli [4,5], Clostridium ljungdahlii 6], and Lactococcus lactis
[7], and whole-cell models have been built for E. coli [8] and Mycoplasma genitalium [9]. These
comprehensive multiscale models have been used in big data analysis [8], biological discoveries
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[71, and metabolic engineering [10]. They also represent significant breakthroughs in exploring the
complex relations between cellular genotype and phenotype. Similar to bacterial multiscale
models, an ME-model [11] and a whole-cell model [12] have recently been constructed and
evaluated for S. cerevisiae. Although these models are significant advances that place eukaryal
multiscale models on a par with their bacterial equivalents, the models still lack integration of regu-
latory information from heterogeneous networks, not only for yeast but also for various other model
organisms. In addition, significant challenges remain for reconstructing comprehensive multiscale
models for non-model species owing to the lack of data.

We review here progress in yeast multiscale metabolic modeling and show how multiscale
models are constructed by gradually encompassing additional constraints. We demonstrate
how this approach greatly enhances model predictions, thereby accelerating model-based
biological discoveries and pioneering work in systematic metabolic engineering. Because
these bases are founded on classical GEMs, we first briefly outline the latest developments
in GEMs and heterogeneous network reconstructions for yeast. In particular, strategies
to expand yeast GEMs with enzyme parameters and heterogeneous networks to yield
multiscale models are evaluated and discussed. Next, applications of GEMs and multiscale
models for yeast in multi-omics integrative analysis and in silico cell factory design are
highlighted. Finally, strategies and directions to develop future generations of multiscale
models are set forth.

Continuous growth of GEMs for model and non-model yeast species

When the whole-genome sequence of S. cerevisiae became available in 1996 [13] it was possible
to reconstruct the first GEM for yeast, published in 2003 as iFF708 [14]. Since then a series of up-
dated S. cerevisiae GEMs have been released [1,2], where each new version has represented a
gradual improvement of previous models. Among these models, the consensus yeast GEMs
(Yeast1 to Yeast8 [15-20]) are a series of community-curated models, and progress made before
Yeast7.6 has been intensively reviewed previously [2,21]. In this section we therefore only evalu-
ate recent developments in S. cerevisiae consensus GEMs since Yeast7.6, which was published
in 2013 [18]. Beyond Yeast7.6, the coverage and quality in description of lipid, flavor, cofactor,
and substrate metabolism has been improved in recent years. The large number of unique me-
tabolite species in lipid metabolism make this part of the metabolic network not straightforward
to represent, in particular in a format that is readily constrained by measured lipidomics data.
Based on detailed curation of lipid metabolism [22], novel approaches have been developed
for modeling lipid metabolism in yeast, for example, the SLIMEr [23] formulation of lipid reactions
and an alternative object-oriented stochastic strategy [24]. The pathways relevant for flavor
formation were recently curated and extended in S. cerevisiae GEM iWS902, which provided
mechanical insights underlying aroma formation during industrial applications [25]. To cover
cofactor metabolism, a network covering yeast iron metabolism was recently integrated into
Yeast7.6 [26]. In Yeast8, the reported cofactor concentrations were further used to update
biomass composition, and consequently related sub-pathways that did not carry metabolic
fluxes [19] in previous GEMs were now activated. Yeast8 was further expanded to simulate a
wider range of substrate utilization based on in vivo substrate usage data from Biolog experiments.
Furthermore, 13 additional aroma compounds and their associated reactions were added to
extend the application of Yeast8 to industrial wine production [27]. Notably, the development
of the consensus yeast GEM has been reproducibly tracked since Yeast8 through Git- and
GitHub-hosted versioning systems, enabling community-driven model improvements and
accessibility to the wide research community (https://github.com/SysBioChalmers/yeast-GEM).
So far this has resulted in engagement of 11 researchers and the release of 23 updated versions
of the model, including the current version 8.4.2.
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Glossary

Cofactor: a non-protein compound that
is necessary to allow or improve the
catalytic efficiency of an enzyme in
specific biochemical reactions.
Constraints: in vivo metabolic fluxes
cannot take on any value but are
constrained to minimum and maximum
values. For example, an irreversible
reaction cannot have a negative flux
value, while a cell is not able to take up
nutrients at an infinitely high rate. The
constraints for each reaction are
dictated by genetics, environment,
network topology, and physicochemical
laws, which can be regarded as different
types of constraints. If substrate-uptake
rates are experimentally measured, they
can be used to set the lower and upper
bounds of the corresponding transport
reactions in a metabolic model.
Genome-scale metabolic models
(GEMs): when a whole-genome
annotation is available, all metabolic
enzymes present in a specific organism
can be identified and combined to
reconstruct a GEM that encompasses
the metabolic network and all gene—
protein—reaction associations. The GEM
is an organism-specific knowledgebase,
but can also be used to predict cellular
phenotypes under various constraints,
for example, exchange reaction rates
measured from fermentation
experiments.

Heterogeneous networks: in addition
to the cellular metabolic networks that
can be described in genome-scale
metabolic models, various other
molecular networks are present in the
cell, including transcriptional regulatory
networks and signal transduction
networks. Although these networks
affect cellular metabolism in distinct
ways, they furthermore interact with
each other to determine the final
phenotypic output.

Metabolic engineering: a strategy
where multiple rounds of gene
manipulation are employed guided by
omic analysis, flux simulation, and/or in
silico strain design, with the objective of
optimizing a microbial cell factory to
overcome bottlenecks in the production
of a desired product.

Metabolism and expression (ME)-
models: in contrast to GEMs, ME-
models combine a genome-scale
description of metabolism with
stoichiometric representations of gene
transcription and protein translation. In
comparison to GEMs, ME-models are
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Although the GEM of S. cerevisiae as a model yeast has been most extensively curated,
GEMs have also been constructed and applied for many other yeast species, including but not
limited to Lachancea kluyveri [28], Exophiala dermatitidis [29], Issatchenkia orientalis [30], and
Cutaneotrichosporon oleaginosus [31]. Progress in reconstructing classical GEMs for these
non-model yeast species is thoroughly reviewed elsewhere [1,2,32]. Although the remainder of
this review will mostly focus on S. cerevisiae, the methods and approaches discussed can also
be applied to GEMs of non-model yeasts, thereby providing a solid basis for the development
of the next generation of multiscale models.

Enhanced yeast GEMs with constraints from kinetics and proteome

Classical GEMs mainly rely on flux balance constraints, but the distribution of metabolic flux
through different branches of the metabolic network is additionally determined by enzyme kinet-
ics and enzyme abundances. Furthermore, enzyme activities are dictated by their 3D protein
structures which by themselves are linked to their primary structure (i.e., protein sequence). As
distinct phenotypes can be governed by variations in enzyme activities, the mapping of protein
sequence variations to altered fluxes can provide new insight into these connections. The integra-
tion of reaction kinetics, protein abundances, and 3D protein structures with GEMs will therefore
enhance its prediction capabilities (Figure 1).

Adding reaction kinetics

Kinetic models have long been developed to describe yeast metabolism. In their early stages such
models primarily encompassed specific sub-pathways, for example, trehalose metabolism [33],
glycolysis [34], and sphingolipid biosynthesis [35]. Although these models can predict cellular dy-
namics under environmental or genetic perturbations, efforts have been made to expand their
limited scope towards describing larger metabolic networks. As part of this, a kinetic model was
established that considered the core metabolic pathways including the glycolysis pathway, the
pentose phosphate pathway, and the citric acid cycle, and the dynamic growth behavior of
yeast on glucose and ethanol could quantitatively be predicted with this model [36]. Since then
the kinetic model of S. cerevisiae metabolism has been further expanded to cover 102 reactions
and 94 intracellular metabolites [37], including the xylose assimilation pathway that facilitated the
prediction of cellular metabolism with glucose and xylose as mixed substrates.

Progress in GEMs has enabled the construction of further kinetic models with an even larger
scope. An early yeast GEM, Yeast4 [15], was the basis for the construction of a kinetic model
of medium size. Flux analysis was employed on Yeast4 to filter out reactions carrying fluxes
under a set threshold so as to reduce the size of the model and thereby improve fitting of kinetic
parameters [38]. Even though only few input data were used for parameter fitting, the resulting
kinetic model containing 285 reactions was able to predict cellular dynamic responses to
changes in external substrates concentrations. More recently, another medium-size kinetic
model of S. cerevisiae metabolism, with 240 reactions and 203 metabolites, was built based
on iND750 [39] and the kinetic parameters were estimated using Bayesian inference from
genome-scale multi-omics data [40]. This model showed good performance in characterizing
the complex allosteric interactions between enzymes and metabolites, which indicates the
value of increasing model complexity beyond small-size models.

Proteome-constrained modeling

To avoid requiring detailed description of the enzyme kinetics of each reaction, various strategies,
including resource balance analysis (RBA) [41], flux balance analysis with molecular crowding
(FBAWMC) [42], and metabolic modeling with enzyme kinetics (MOMENT) [43,44], have emerged
to build genome-scale resource allocation (constrained) models. These models all address the
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able to predict proteome compositions,
and, if proteome constraints are set to
measured values, ME-models typically
have an improved performance in
cellular phenotype prediction.
Microbial cell factory: a microbial
strain (e.g., bacterium or yeast) that can
be used to catalyze the conversion of
feedstocks to valuable fuels, chemicals,
and pharmaceuticals.

Multilayer omics: advances in high-
throughput analytical technologies allow
quantification of different biological
molecules in a cell, for example,
transcriptomics, proteomics, fluxomics,
and metabolomics. These data
represent different layers of molecular
networks within the cell. Omics data
therefore not only catalogue behavior at
a particular molecular level but can also
be used to characterize interactions
between multiple molecular networks.
Multiscale models: comprehensive
models that consist of multiple
heterogeneous models and/or networks
at different cellular layers or scales. With
coupling algorithms, complex metabolic
activities from different cellular layers or
scales can be integrated and accurately
captured by multiscale models.
Turnover number: also known as the
Koot OF catalytic activity of an enzyme, this
represents the maximum number of
substrate molecules that can be
transformed into product per enzyme
catalytic site per unit time.
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Box 1. Genome-scale metabolic models (GEMs)

A GEM is constructed from detailed functional annotation of a species’ genome (Figure ). This annotation is used to define the gene—protein-reaction associations of all
metabolic genes, which collectively describe the cellular metabolic network, representing an organism-specific physiological and genetic knowledgebase [113]. The
stoichiometry of the metabolic network can mathematically be described in a stoichiometric matrix (S-matrix) where the coefficients enumerate whether a metabolite
is a substrate or product for each of the reactions in the network. The S-matrix is complemented by various constraints on allowable metabolic flux (v) through each
reaction that is dictated by, for example, thermodynamics or experimentally measured uptake rates [114]. Given the assumption of mass balance at steady-state,
the sum of input and output fluxes through one metabolite is equal to zero (S*v = 0). Although this mathematical model can be used to estimate metabolic flux distributions,
to reduce the solution space with the aim of yielding physiologically relevant flux distributions often requires the definition of a cellular objective. Objective functions that are
often used include maximization of biomass production (particularly suitable for microorganisms) or minimization of energy utilization or nutrient uptake. Through the
accumulation of novel evidence from physiological and molecular experiments, discrepancies between model predictions and measured phenotypes can gradually be
reduced, thereby improving the quality of the GEMs accordingly. In addition, improving annotation of enzyme function and reaction characteristics (i.e., charge balance,
directionality) from metabolic databases, for example, MetaCyc [115] and KEGG [116], can help to further improve the quality and coverage of the GEMSs.
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Figure |. Schematic overview of classical genome-scale metabolic model (GEM) reconstruction from a sequenced genome. A stepwise description of
the GEM reconstruction and evaluation process is detailed in [113]. M are metabolites, R are reactions, and v are the metabolic fluxes through each reaction. As the first
step, a genome is annotated to find genes coding for enzymes that catalyze reactions in the metabolic network. A mathematical description of the metabolic network
stoichiometry in the form of an S-matrix can then be paired with constraints on minimum and maximum reaction fluxes (v) to allow predictions based on model simulations.

aspect that cellular metabolism has a limited catalytic capacity that is dictated by constraints on
the proteome, and they thereby display strong potential to improve the prediction capabilities of
GEMs [41,43]. In one of these strategies, enzyme abundance and catalytic capacities (kea1) are
systematically incorporated into existing GEMs to generate so-called enzyme-constrained
GEMs (ecGEMSs, Box 2) [45]. Strikingly, the enzyme-constrained model ecYeast7.6 significantly
improved flux predictions in comparison to the classical GEMs Yeast7.6, as reflected by a drastic
reduction in flux variability with flux sampling analysis [45]. In ecGEMs the kinetic capacity of each
enzyme is introduced as the product of the turnover number for the enzyme and the enzyme
concentration (Box 2). When no information is available on individual enzyme concentrations,
as could be obtained from quantitative proteomics for example, the sum of all metabolic enzymes
can instead be added as a constraint. ecYeast7.6 can predict the Crabtree effect whereby
S. cerevisiae can produce ethanol under aerobic condition and higher glucose concentration
[45] by using glycolysis instead of the oxidative phosphorylation pathway (Figure 1). Such a
shift in energy generation is also relevant for tumor cell metabolism (known as the Warburg effect)
[46], but it cannot be captured by traditional GEMs. Furthermore, by describing the temperature
effect on enzyme turnover numbers in ecYeast7.6 it has been possible to simulate the effect of
temperature on the growth and phenotype of yeast [47] by using the new model etcYeast7.6.
In addition, the association of metal ions as enzyme cofactors has been included to construct
the CofactorYeast model, and the model-derived hypothesis that iron uptake limits heterologous
production of p-coumaric acid was experimentally validated [48]. An ME-model for S. cerevisiae
(YETFL) has recently been established that integrates both expression and thermodynamics flux
constraints with Yeast8. yETFL performed well in predicting essential genes, maximal growth

294 Trends in Biotechnology, March 2022, Vol. 40, No. 3


Image of Figure I

Trends in Biotechnology

Classical GEMs Enhanced GEMs Novel applications

- Diameter = 1004 , ¥
S-matrix »

Dresidue xy =5 A
R: reactions; M: metabolites redueny

. 7 4 Metabolomics  Proteomics *,
a6p ucoseePG S e0=10mM g N
. N
ot D /" E,0=1000 b Qf o
i d ! 2 3 oQ’0 o \
pei| |en ! Kp=5 5| 00 70 !
F6P ! koo oEivoc 1 o1 o7 ’ '
bk N Doy =t 1 x| ~0 |
- 1
FBP*T ) & : Km+c %0 50 100 150 200 2 v . :
i L easure
pba| S ! Reaction kinetics I
GAZP¥ & A .
o Q 1 1
L=, e N
. ] ! .
*_ TCA \ ', Protein pool = Ethanol \‘:
L cycle ‘ ! K= 10571 = | production :
SR, H 8 | Glucose |
! ) ) ! .
v S kb [Ei] - ke uptake !
H a2
I — 2 i
i Z E; < Ppoot £ | 0, uptake :
:
R R, Rj H 3 ! i
1 . [T
M| -1 |0 | 1 N Enzyme constraints Growth rate (/h) A
M| -1 | o | o DT TmmmmmmSmmmmmmmmmmmmmsooooooooooooooooeooeet :
1 ) Fon |
Myl 1 | 1| 0 ‘: : ’ o !
M ! SNP; = Q120P & > N !
il o | 1 | 1 ! : o' Y 5 i
| ‘ D b 1
1 £ :
I‘ 1

S; = 1000 A?

Trends in Biotechnology

Figure 1. Enhanced classical genome-scale metabolic models (GEMs) generated by integrating enzyme
parameters. Three examples are shown for how constraints from enzyme kinetics and 3D structures can be used to
improve the predictive ability of classical GEMs. In (1), a genome-scale kinetic model for yeast [40] can predict time-
dependent metabolite and protein abundances. In (2), enzyme-constrained models (ecYeast7.6, Box 2) can predict the
Crabtree effect that classical GEMs cannot replicate [45]. In (3), protein 3D structures can be merged with Yeast8 to enable
hotspot analysis, where mutation hotspots can be correlated to cellular growth phenotypes [19]. Abbreviations: 6PG, 6-
phosphogluconate; co, initial substrate concentration; Dyesique, SPatial distance of two residue sites within a protein 3D
structure; EO, initial enzyme concentration; F6P, fructose 6-phosphate; FBP, fructose-1,6-bisphosphate; G6P, glucose 6-
phosphate; GA3P, glycerahyde-3-phosphate; k.at, €nzyme turnover number; K.,, Michaelis constant of an enzyme; PP,
pentose phosphate; Py, @ pseudo-metabolite representing all cellular metabolic enzymes; S, surface area of a protein 3D
structure; S-matrix, stoichiometric matrix; TCA cycle, tricarboxylic acid cycle; v, fluxes of reactions.

rates, and overflow metabolism [11]. Altogether, these proteome-constrained models are powerful
extensions beyond classical GEMs and can simulate and characterize yeast metabolism, which
was not possible when only considering the metabolic network stoichiometry.

Incorporation of protein 3D structure information

Although enzyme kinetics and abundances influence the fluxes through the reactions that consti-
tute a metabolic model, consideration of protein 3D structures would enable exploration of how
sequence differences might affect interactions between proteins and metabolites as well as protein
activity and stability. Protein structure information can be connected with GEMs through the use of
the gene—protein—reaction relationships (GPRs) that are an essential part of GEMs [49], and
thereby provide additional constraints for model predictions (Figure 1).

So far, the lack of full integration of yeast protein 3D structures with GEMs is largely due to the
insufficient quality and coverage of 3D structures for all metabolic enzymes in GEMs. The first
attempt to perform large-scale protein 3D structure modeling of S. cerevisiae was in 1998 with
the reconstruction of all-atom 3D models for 1071 (17%) of the yeast proteins [50]. Because
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Box 2. Enzyme-constrained GEMs (ecGEMSs)

What separates classical GEMs (Box 1) from ecGEMs is that both enzyme kinetics and abundances are considered in the
latter. Because no nonlinear relationships are introduced when adding enzyme constraints, these ecGEMs can be
simulated and analyzed by using the same constraint-based algorithms that are applied to GEMs (Box 1). In contrast to
classical GEMs, in ecGEMs fluxes through each enzyme-catalyzed reaction are constrained by their turnover numbers,
namely enzyme-specific keo values multiplied by the enzyme abundances (Figure l). Meanwhile, the total quantity of
enzymes that can catalyze all metabolic reactions is constrained by a protein-pool pseudo-metabolite, whose usage is
restricted by an upper bound that is in accordance with experimental total protein measurements. WWhen no quantitative
proteomics data are available, only the total protein-pool usage is constrained, while in the model the amount of protein
can be freely distributed across all enzymes (Figure ). If quantitative proteomics data are available for a condition of interest,
then individual enzyme usages can be constrained to their corresponding measured abundances. GECKO, a MATLAB
and Python toolbox, has been developed to construct and simulate such ecGEMs [45]. The latest iteration of this toolbox,
version 2 [117], has placed particular focus on the reconstruction of ecGEMs for non-model organisms.

GEMs ecGEMs
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" GECKO Prool
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[Eq]+[Ex] + ... +[E)] S Ppog
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Figure |. Reconstruction of enzyme constrained genome-scale metabolic model (ecGEMs) by accounting
for constraints on enzyme kinetics and abundances. LB and UB are lower and upper bounds, M are
metabolites, R are reactions, and v are the metabolic fluxes through each reaction. E represents the abundances of the
enzymes (e1 and e,) that catalyze the corresponding reactions, while Py, is a pseudo-metabolite representing all
cellular metabolic enzymes. The equations in blue are new constraints added into ecGEMs that are absent from
classical GEMs. A detailed description of the ecGEM reconstruction process using GECKO is given in [45].

protein 3D structures are more conserved than amino acid sequences, this showed that protein
function prediction can be aided by clues from the folds, active sites, and binding sites extracted
from the protein 3D structures. More recently, the Rosetta de novo structure-prediction method
was used to predict the structure of 3338 protein domains that were parsed from the whole yeast
proteome, among which 581 domains could be assigned to novel Structural Classification of
Proteins (SCOP) superfamilies [51].

Experimentally determined yeast protein structures are readily available from the Protein Data
Bank (PDB) database [52], while homology-derived protein structures can be queried from
various sources including SWISS-MODEL [53] and Modbase [54]. As a typical example, a total
of 3846 experimentally determined protein structures are available from the PDB database for
1543 S. cerevisiae S288c proteins. Some of these structures are at low resolution or include
mutations compared to the reference sequence, such that quality analysis and homology
modeling are necessary to ensure that advanced models are based on high-quality structures
[55]. Meanwhile, high-quality experimentally determined yeast protein structures continue to
accumulate, and homology modeling approaches have significantly advanced. It has now
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become feasible to collect protein 3D structures at the proteome scale for S. cerevisiae, and this
forms the basis for building GEMs constrained (or accompanied) by additional parameters from
protein 3D structures in the near future.

Connecting yeast GEMs with heterogeneous cellular networks

Cellular metabolic activities are tightly regulated at multiple levels through the interaction of various
heterogeneous molecular networks, and even ecGEMs alone are not able to simulate the effects
of complex regulation. Thus, the multiscale models are essential to capture the intricate metabo-
lism by integrating heterogeneous cellular networks including signal transduction networks,
transcriptional regulatory networks (TRNs), and protein secretion pathways with GEMs (Figure 2).

Stress- and nutrition-related signal transduction networks

The inclusion of signal transduction networks in a multiscale model would allow it to predict
cellular responses to external stimuli or stress. As one of the earliest examples, a model of osmoreg-
ulation was integrated with a metabolic model to describe the cellular response to hyperosmotic
shock [56]. Since then, computational models for many more signal transduction networks have
been constructed, including the signaling networks for MAPK [57], Snf1 [58], and ion regulation
[59]. Moreover, the complexity of signaling network models has increased by considering multiple
stress and nutrition stimuli simultaneously. As one attempt, all six major stress-response pathways
related to ion homeostasis, nutrient adaptation, osmotic stress, oxidative, heat shock, and phero-
mone stress response were merged into a holistic molecular interaction map [60]. Interestingly, this
comprehensive map showed that yeast stress-response pathways are organized into bow-tie struc-
tures, and complex-mediated reversible reactions obtained through network motif analysis play a
unique role in the regulation of stress responses. An integrated nutrient signaling network was recently
built for yeast, and this could be used to predict nutrient-responsive transcription factor (TF) activities
in mutant strains under nutrient shifts [61]. However, all these newly developed stress-related signal
transduction network models were not coupled with yeast GEMs, and they were therefore not able
to explore how cellular metabolism was quantitatively regulated in response to these external
stresses. By contrast, Boolean modeling of a glucose-sensing regulatory pathway has recently
been successfully integrated with a small enzyme-constrained metabolic model for yeast, and this
could elucidate how dynamic regulation through a signaling pathway affects cellular metabolism
and results in improved enzyme utilization predictions for both respiratory and mixed metabolism [62].

Transcriptional regulatory networks

Regulation of gene transcription influences metabolism on a global scale [63], rendering it impor-
tant to develop TRNs that accompany yeast GEMs to allow comprehensive simulations of meta-
bolic network regulation. The functional annotation of S. cerevisiae TFs is ever increasing and is
catalogued in several public databases, such as the Saccharomyces Genome Database (SGD)
[64] and YEASTRACT [65], which are instrumental for building high-quality TRN models. As an
example, a comprehensive TRN model was built for S. cerevisiae based on the SGD database
[64], consisting of 186 TFs and 5727 target genes, involving 28 260 regulatory interactions
[66]. Large-scale RNA-seq data from divergent conditions is another important source to infer
TRNs for S. cerevisiae. With the aid of machine learning, a global TRN comprising 12 228 inter-
actions was built based on single-cell RNA-seq measurements on 38 285 individual cells under
11 different environmental conditions [67]. Timecourse gene expression data has also been
used to develop a whole-cell transcriptional model which could predict and validate new tran-
scriptional interactions [68]. The high-confidence TRN map of yeast could be expanded based
on multiple datasets by using dual threshold optimization and network inference algorithms,
resulting with a high-confidence yeast TRN made up of 96 TFs, 1686 target genes, and 3268
regulatory interactions [69].
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Figure 2. Roadmap to build multiscale and whole-cell models for yeast. (A) Four steps in building functional whole-
cell models. To obtain a functional whole-cell model, multiple rounds of design-build-test-learning (DBTL) cycles are always
needed. (B) Various heterogeneous networks can be combined with genome-scale metabolic models (GEMSs) to result in
multiscale metabolic models. Three heterogeneous networks are exemplified here. Transcription and translation' represents
a mathematical description of gene transcription and translation processes, including macromolecular (i.e., protein and
ribosome) biosynthesis [118]. 'Secretion pathway" includes the processes of synthesis, transport, maturation, and secretion
of proteins via trafficking through multiple organelles within the yeast cell. 'Regulatory network' represents a mathematical
description of the transcriptional regulatory networks that control gene expression, including which transcription factors activate
or repress which genes. (C) Whole-cell models of yeast include all or most of the heterogeneous networks described in (B), and
are supplemented by mathematical descriptions of additional subcellular processes, thereby expanding the multiscale models.
Three such subcellular processes are exemplified here, including post-translational modifications where enzyme activity is
affected by protein phosphorylation, the cellular stress responses under oxidative conditions, and a description of the cell
cycle that is essential to fully capture the generation of new yeast cells. Abbreviations: ER, endoplasmic reticulum; ERAD,
ER-associated protein degradation; M, metabolite; TF, transcription factor; UPR, unfolded protein response.

High-quality yeast TRNs set a solid base to formulize integrated models, even though combining
TRNs with GEMs remains challenging. Multiple novel methods that couple TRNs with GEMs have
recently been reviewed [70]. Several of these novel algorithms have been used for yeast, and they
can roughly be divided into two main approaches. (i) Based on experimental data, Boolean rules
reflect the interactions between TFs and their target genes, and thereby the reactions in the GEM
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can be switched on or off based either on the TRN or on gene expression data [71]. (i) Using the
probabilistic regulation of metabolism (PROM) [72] approach, the probabilities to characterize
gene states and gene—TF interactions are introduced. According to these probabilities, the
maximum fluxes through specific reactions are tuned to represent the effects of TF regulation.
This probabilistic framework successfully combined TRNs with GEMs, leading to more accurate
growth prediction for S. cerevisiae [73].

Protein secretion pathway

In yeast, the protein secretion pathway encompasses numerous distinct steps that are catalyzed by
>100 cellular proteins [74], which together can determine not only cellular phenotypes but also the
production yields of heterologous proteins [75]. By describing 16 subsystems that cover all the
secretory machinery processes from translocation to sorting, a stoichiometric model of the
S. cerevisiae protein secretion pathway was reconstructed [76]. However, in this model only small
parts of the secretion pathway were connected with the metabolic network described in a GEM,
and the model therefore had limited use in simulations. To probe the effect of N-glycosylation on
recombinant protein production, native and humanized N-glycosylation pathways have been
integrated with the Pichia pastoris GEMiLC915, thereby displaying improved accuracy in protein pro-
duction yield predictions [77]. It is therefore anticipated that full integration of a protein secretion model
with yeast GEMs will enable the simulation of how cellular physiology and protein secretion interact.

Whole-cell models for a comprehensive view of yeast metabolism

Although the various multiscale models discussed earlier have been built for yeast, numerous sub-
cellular processes such as protein activation and folding are still not accounted for. So-called
whole-cell models can assemble diverse subcellular processes together (Figure 2), where simula-
tion of cellular metabolism is only one of the aspects being considered. A whole-cell model of
S. cerevisiae (WM_S288C) has been reconstructed [12] by following an earlier approach
developed for M. genitalium [9], where the yeast GEM iT0977 was expanded to encompass 15
cellular states and 26 cellular processes, combined into a single computational model. The sub-
models of WM_S288C describe multiscale cellular processes, including transport and metabolism,
DNA replication and maintenance, RNA synthesis and maturation, protein synthesis and matura-
tion, and cytokinesis [12]. During simulations with WM_S288C, these sub-models were decoupled
and simulated independently on a 1 s timescale before being integrated together. Through this
approach of sub-model integration, WM_S288C provided novel insights into the cellular regulation
of yeast metabolism. As one validation, simulations with WM_S288C showed that nonessential
genes can regulate nucleotide concentrations, thus exerting control on cell growth. WM_S288C
represents an important first step towards building comprehensive whole-cell models of yeast
that can be used to unravel complex relations between yeast genotype and phenotype.

Applications of yeast GEMs and multiscale models
GEMs and their related multiscale models have found numerous successful applications [78-81].
We describe here several applications (Figure 3) to illustrate how such models can be leveraged
to accelerate studies in yeast systems and synthetic biology.

The pan-GEM as a template model for newly sequenced yeast species

High-quality GEMs can function as template models to reconstruct classical GEMs for other
yeast/fungal species (Figure 3A). Previously, the reconstruction of high-quality GEMs for Yarrowia
lipolytica [82], Rhodotorula toruloides [83], and Kluyveromyces marxianus [84] was facilitated by
extracting draft GEMs from the S. cerevisiae GEMs based on gene homology. This approach was
also used to build GEMs for 1011 different S. cerevisiae strains by first reconstructing a pan-GEM
that could serve as a template model [19]. The different GEMs enabled characterization of
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Figure 3. Selected applications of classical genome-scale metabolic models (GEMs) and multiscale models of yeast. (A) Yeast GEMs as the basis for the
reconstruction of a pan-GEM, which both enable the reconstruction of GEMs for other less well studied yeast species. The pan-GEM encompasses all the reactions from a
group of species or strains. GPRs are the gene—protein-reaction associations contained in GEMs. (B) Integrative analysis of (multilevel) big data. Based on experimentally
measured data, both yeast GEMs and multiscale models can predict metabolic fluxes, while the latter can even predict protein and/or metabolite abundances. When
protein 3D structures are included in the multiscale models, genetic mutations can be mapped onto the 3D structures, and the mutation hotspots identified can be
linked to changes in metabolism to suggest causative relationships [119]. (C) Applications in strain design. Various constraint-based algorithms, including OptKnock
[99] and FSEOF [101], can be applied to classical GEMs to predict gene targets that should be overexpressed, knocked down, or knocked out to increase the
synthesis of a desired product. With enzyme-constrained GEMs (ecGEMSs) or kinetic models, flux control coefficients (FCCs) can be determined, allowing quantification
of how changes in distinct k.t values affect the growth rate or synthesis of desired products. Enzymes with higher FCCs are then potential targets to be further
validated through wet-laboratory implementation. Abbreviations: FBP, fructose-1,6-bisphosphate; FEP, fructose 6-phosphate; GA3P, glycerahyde-3-phosphate; G6P,
glucose 6-phosphate; 6PG, 6-phosphogluconate; PP, pentose phosphate; S-matrix, stoichiometric matrix; TCA cycle, tricarboxylic acid cycle.

metabolic differences between strains isolated from various environments. Further expanding this
scope, Yeast7.6 and other manually curated yeast and fungal GEMs have been used to formulate
a pan-fungal metabolic model, representing a metabolic repository for 33 yeast/fungi in the
Dikaryon subkingdom [85]. Similarly, a pan-GEM for 343 fungal species has recently been built
using Yeast8 as the starting model (https://github.com/SysBioChalmers/Yeast-Species-GEMs [86]).
From this it is evident that quality improvements in yeast GEMs can be propagated to the generation
of a pan-GEM, which in itself will accelerate the reconstruction of comprehensive models for any
newly sequenced yeast/fungal species. Moreover, this applies not only to classical GEMs but
also to multiscale models, such that model developments in S. cerevisiae can benefit models of
many other yeast species. Nonetheless, regulatory networks are typically less well conserved
than the stoichiometry of the metabolic network.

Multi-omics integrative analysis
GEMs and multiscale models can readily be deployed for integrative analysis of multi-omics data

and flux simulations in yeast (Figure 3B). As reported, combining simulations of a classical GEM
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with RNA-seq analysis showed that mitochondrial fluxes are positively associated with changes at
the transcript level, suggesting transcriptional regulation [87]. Similarly, combining dynamic flux
simulations with mRNA measurements identified Zwf1p (glucose 6-phosphate dehydrogenase) as
a bottleneck in the production of ethanol when xylose is the substrate [88]. Enzyme-constrained
models such as ecYeast7.6 can furthermore predict both intracellular enzyme usages [45] and
fluxes through each reaction, thereby helping to illuminate the consistency and discrepancy between
measured and predicted protein abundances (or fluxes). More recently, gene expression and
fluxomic data for 1143 S. cerevisiae mutants were combined with advanced machine-learning
procedures to improve predictions of yeast cell growth, thereby outperforming the predictions that
could be made from single datasets [89)].

In turn, integration of omics constraints can enhance predictions with both classical GEMs and
multiscale models. For instance, constraining the reaction bounds based on abundances from
proteomics and transcriptomics measurements improved flux predictions with iIMM904 [90].
Quantitative proteomics could be used directly to constrain an enzyme-constrained model of
yeast (i.e., ecYeast7) to increase its prediction abilities [45], in which the maximal flux of one reac-
tion could be constrained by both enzyme abundance and its turnover number (Box 2). As one
application, simulations with ecYeast7.6 under a series of growth rates helped to identify key
enzymes controlling fluxes towards amino acid synthesis [91]. With kinetic models, multi-omics
datasets including metabolomics, proteomics, and fluxomics can be fully mined and exploited
to tune the model structure and parameters, thereby significantly improving model predictions
[40,92]. Omics data have been instrumental for building condition-specific GEMs, in particular
of human tissues and cells [93] as part of investigations into disease. However, this approach
has so far rarely been used to build condition-specific GEMs for yeast.

Despite the early stage of their development, GEMs enhanced with protein 3D structures have
shown potential to connect structural bioinformatics with the systems biology paradigm, and
this approach has been able to generate new biological insights into the role of specific residue
mutations in cellular fitness [49,94,95]. Protein 3D structures enable mutation cluster analysis
based on mutation and structural information (Figure 3B), and such an analysis with proYeast8P®
[19] was able to relate potential mutation signatures to specific traits of wine production and
Substrate utilization. In studies of human disease, mutation cluster analysis with protein 3D struc-
tures is more widely used, and for instance can help to identify driver mutations for the formation
of various types of cancers [96,97].

Cell factory design and optimization

Various computational methods, including MOMA [98], OptKnock [99], OptForce [100], and
FSEOF [101], that have been reviewed previously [102], have been developed for using classical
GEMs in the design and optimization of microbial cell factories (Figure 3C). Indeed, in silico strain
design with yeast GEMs has been used for a wide range of products, including succinic acid
[30], dicarboxylic acid [103], L-phenylacetylcarbinol [104], lipid [105], and human superoxide
dismutase [106], which have also been summarized in detail [32].

Gradually, multiscale models of yeast are beginning to show their value in identifying rational targets
for systematic metabolic engineering. First, a multiscale model including regulation could be
employed with novel methods such as IDREAM [73] and OptRAM [107] to predict TF targets for
genetic engineering to improve the production of multiple products because the roles of TF in
regulation could be evaluated using the integrated models. Furthermore, ecYeast7.6 has been
used to rank gene targets for synthetic biology [45] by flexibly adjusting protein abundances
or keat Values and evaluating the response of these interventions. Similarly, the enzyme- and
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temperature-constrained GEM etcYeast7.6 has identified key enzymes associated with heat-
tolerance, and one of the candidates, ERG1, was experimentally verified to affect heat-tolerance
[47]. In addition, by using a kinetic model of yeast, the potential enzyme targets for improving the
flux of desired products can be prioritized via flux control coefficient analysis or correlation analysis
between the predicted enzyme usages and the relevant product formation rates [40].

Concluding remarks and future perspectives

Multiscale models enable interrogation of biological complexity at multidimensional levels instead
of limiting them to only one level in the central dogma of biology. Despite significant advances in
yeast multiscale models, there are still several challenges that could hinder progress in the near
future, in particular when expanding multiscale model reconstruction to non-model yeast species
(see Outstanding questions). First, the number of enzymes for which high-quality experimentally
determined kinetic parameters are available is still limited [108], particularly for non-model yeast
species. However, developments in machine learning and novel parameter inference procedures
may pave the way for the prediction of unknown parameters of enzyme/protein for less well studied
yeast species [109]. Second, model reconstruction needs large numbers of standardized datasets,
such as growth data obtained from continuous cultivation and absolute quantitative protein abun-
dance data from mass spectrometry measurements. However, the availability of such datasets
is limited for most yeast species beyond S. cerevisiae. The collection of high-quality growth
and omics datasets for non-model yeast species under standard conditions would therefore
be very valuable and alleviate the shortage of essential data. Lastly, the metabolic models of
S. cerevisiae and other yeast strains still require additional curation to yield a more complete
coverage of metabolic sub-pathways, and the resulting high-quality models will act as new corner-
stones to build comprehensive multiscale models for yeast. To solve the issue, automatic protein
function prediction [110] together with evidence from omics measurements and molecular
experiments could help to increase the metabolic coverage. In addition, inconsistencies between
model predictions and in vitro experimental results will provide clues for further iterative improve-
ment of model quality.

Even though a whole-cell model WM_S288C has been developed based on S. cerevisiae GEM
iTO977 [12], challenges remain in developing a fully functional whole-cell model for yeast from the
aforementioned multiscale models. Combining high-quality TRNs with metabolic models will
certainly help to illustrate how transcriptional regulation affects cellular metabolism through
resource allocation under various genetic or environmental perturbations. However, TRNs and
stress-response networks have not yet been integrated with yeast ME- or whole-cell models be-
cause computational toolboxes to couple multiple types of heterogeneous networks are still lacking.
Some novel coupling algorithms and simulation strategies, such as Bayesian metamodeling [111]
and multi-algorithmic simulators [112], have recently been updated and evaluated, and these ap-
proaches could be used to integrate more interconnected cellular processes with yeast whole-
cell models. Overall, we anticipate that progress in measurements and algorithms will promote
yeast ME-modeling and whole-cell models to provide a more powerful computation platform that
will play a prominent role both in fundamental studies of yeast and in cell factory design.
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Outstanding questions

How can we efficiently develop a new
generation of multiscale models for
non-model yeasts?

How can we further develop more
advanced yeast whole-cell models by
integrating more heterogeneous cellular
networks?

How can we develop genome-scale
kinetic models for yeasts?

How can we use the various omics
data to tune model parameters for
better prediction?

How can we exploit complex models
to carry out intelligent cell factory
design?

How can we integrate different types of
regulatory networks with GEMs during
model simulations?

How can we predict the activity of
enzymes with specific mutations and
use these data as input for the model
simulation?
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