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Aggregated amyloid-β (Aβ) is found in large amounts in the 
autopsied brains of Alzheimer’s disease (AD) patients, and it 
is widely considered a key factor in triggering neural degen-

eration in AD1,2. The long-standing amyloid cascade hypothesis has 
been challenged in recent years by the lack of correlation between 
Aβ accumulation and cognitive impairment in elderly patients and 
the better correlation between histopathological changes of neu-
rofibrillary tangles (aggregation of tau) and loss of cognition3–5. 
However, three major findings continue to support the hypothesis: 
Aβ overproduction is found in nearly all familial forms of AD6,7, the 
oligomeric form of Aβ is toxic to neurons8–10, and overexpression of 
Aβ and APP (amyloid precursor protein) mutants in animal mod-
els leads to the development of AD-related phenotypes11,12. Recent 
AD-related studies continue to support the key role of Aβ13,14.

Extensive work has focused on developing inhibitors of Aβ toxic-
ity as potential therapeutic drugs for AD. Most of these target Aβ 
aggregation15–17, reduce the production of Aβ through inhibition 
of β- or γ​-secretase18–20, or reduce Aβ levels through immunother-
apy21,]22. Recent studies suggest that one or more high-affinity protein 
receptors on the neuronal cell surface, such as cellular prion protein 
(PrPC23) and ephrin type B receptor 2 (EphB224), are responsible for 
the recruitment of Aβ oligomers and subsequent neurotoxicity25. 
These findings have sparked interest in illuminating the molecu-
lar mechanism of Aβ-receptor recognition, with the hope that this 
information will lead to the development of new, effective AD thera-
peutics that inhibit the interaction of Aβ with neuron cell receptors.

Among all these cell surface Aβ receptors25, LilrB2 is one of a few 
receptors that are reported to be promising therapeutic targets for 

the treatment of AD, based on the observation that genetic deple-
tion of the murine homologue, PirB (PirB−/−), rescues Aβ-induced 
AD-related phenotypes in multiple model systems from cultured 
cortical neurons to transgenic mice, including recognition memory 
defects in APP/PS1 mice26. The two amino-terminal extracellular 
immunoglobulin domains (D1D2) of LilrB2 and its murine homo-
logue PirB selectively bind Aβ oligomers with nanomolar affinity. 
LilrB2 protein is detected in human brains of both AD patients and 
non-AD adults, with no significant difference in expression level, 
but its downstream signalling is altered in AD brains, implicating 
LilrB2 in Aβ-dependent synaptic loss26. Here, we identify the bind-
ing moieties of both Aβ oligomers and LilrB2 and present a model 
for their interaction. Based on the structural model, we designed 
Aβ–LilrB2 interaction inhibitors by computationally selecting mol-
ecules to compete with Aβ for the LilrB2 binding sites. The resulting 
compounds inhibited the interaction between oligomeric Aβ and 
LilrB2 with up to high nanomolar Ki and low micromolar half maxi-
mum inhibitory concentration (IC50) values. They also showed the 
ability to inhibit LilrB2-induced Aβ–cell contact, and therefore to 
inhibit Aβ cytotoxicity.

Results
Mapping the core region of Aβ binding to the LilrB2 D1D2  
domains. A 200-residue recombinant LilrB2 segment spanning the 
D1 and D2 domains (LilrB2 D1D2) was used in our study, and oligo-
meric human Aβ1–42 (Aβ42) was prepared by incubating 10 μ​M Aβ42 
at 37 °C overnight (Supplementary Fig. 1). LilrB2 D1D2 selectively 
binds oligomeric Aβ42 as previously reported26 (Supplementary Fig. 2).  
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To map the binding core of Aβ, we developed an enzyme-linked 
immunosorbent assay (ELISA)-based interaction assay that enables 
high-throughput detection of the Aβ–LilrB2 interaction. We immo-
bilized LilrB2 D1D2 on an ELISA plate and measured the amount 
of bound Aβ segments by Aβ-specific antibodies or the fluorescence 
signal of fluorescein conjugated to the segments. We found the 
LilrB2 D1D2 domains bind to Aβ42 and its amino-terminal moiety 
Aβ1–21, but not to Aβ1–15 (Fig. 1 and Supplementary Table 1). We also 
found that the LilrB2 D1D2 domains bind to Aβ15–35 but not Aβ22–42 
(Supplementary Fig. 2). These results indicate that the Aβ segment 
16KLVFFA21, which is also widely considered to be a key element of 
Aβ aggregation27,28, is the core region that binds to LilrB2 D1D2.

We then tested the interaction of LilrB2 D1D2 with 16KLVFFA21 
derived peptides. We did not detect binding of LilrB2 D1D2 to 
the peptide that contains a single copy of 16KLVFFA21 (Aβ16–21, 
Fig. 1). However, our experiment showed it did bind to a tan-
dem repeat (TR) design of 16KLVFFA21 (Aβ16–21-TR, sequence 
KLVFFAPDGKLVFFA, Fig. 1, Supplementary Table 1). The binding 
we observed with the tandem repeats was not due to introduction of 
the Pro-Asp-Gly linker between the two 16KLVFFA21 copies, because 
the control peptide with a single copy of 16KLVFFA21 and the linker 
(Aβ16–21-C, sequence KLVFFAPDG) did not bind to LilrB2 D1D2 
(Fig. 1). These results suggest that two copies of 16KLVFFA21 repre-
sent a minimal Aβ oligomer and the core epitope for LilrB2 binding. 
Moreover, the observation that the tandem repeat but not the single 
copy of 16KLVFFA21 binds to LilrB2 suggests that LilrB2 recognizes 
a particular conformation in addition to the primary amino acid 
sequence. We hypothesize that the antiparallel dimer of 16KLVFFA21, 
rather than a single copy, readily assembles into a minimal oligo-
mer, reasoning that the tandem linkage lowers the entropy barrier 
to oligomer formation (see Discussion).

Crystal structure of LilrB2 D1D2 complexed with benzamidine. 
We mixed LilrB2 D1D2 with various Aβ segments and screened for 
crystals, and we determined the crystal structure of LilrB2 D1D2 
mixed with Aβ14–23 at 2.1 Å resolution (Supplementary Table 2).  
In this structure, no density for the Aβ segment was found, which 
is consistent with no detectable binding of 16KLVFFA21 monomer 
to LilrB2 D1D2. Instead we found four benzamidine (Ben) mol-
ecules (Fig. 2a), which were used as an additive for crystal optimi-
zation. The presence and positions of the benzamidine molecules 
were determined by inspection of difference electron density maps 
(Fo–Fc, Supplementary Fig. 3) and the surrounding environment 

(Fig. 2b,c). The chemical structure of benzamidine is similar to 
that of phenylalanine (Fig. 2a), so it mimics the binding of phe-
nylalanine from the 16KLVFFA21 binding core of Aβ. We chose the 
binding pockets of Ben 3 and 4 for further investigation because 
of the following observations. First, the binding pockets of Ben 
3 and 4 are close to each other (separated by 7.5 Å) and are both 
located in the groove between the D1 and D2 domains (Fig. 2a).  
Given that at least two copies of 16KLVFFA21 are required to bind 
to LilrB2 (Fig. 1) and each copy has two phenylalanines, it is likely 
that the binding sites for 16KLVFFA21 on LilrB2 have two phenyl-
alanine binding pockets close to each other. Second, most residues 
comprising the Ben 3 and 4 binding pockets are hydrophobic, with 
geometry suitable for binding bulky hydrophobic residues such 
as phenylalanine (Ile154, Tyr199, Pro204, Tyr 205 and Trp207 for Ben 3 
and Val38, Cys156, Pro164, Cys166 and Trp207 for Ben 4) (Fig. 2a–c).  
Hydrogen bonding (Ben 3 with Gly51 and Asn168; Ben 4 with Asp36) 
and crystal lattice contacts (Ben 3 with Gly51 and Ben 4 with Leu53) 
also stabilize benzamidine binding, but are minor contributors 
and appear unnecessary for binding phenylalanine. Third, Asp36 
and other negatively charged residues are located adjacent to the 
groove (Supplementary Fig. 3), close enough to neutralize the pos-
itive charge of Lys16 of 16KLVFFA21 and further stabilize its binding. 
Fourth, by superimposing our complex on the ligand-free LilrB2 
D1D2 structure (PDB ID 2GW529), we found that, on ligand bind-
ing, the binding groove widens due to movement of the β-strand 
of residues 165–168. In addition, the loop composed of residues 
159–164, which is disordered and lacking electron density in 
the ligand-free structure, becomes ordered and forms a protec-
tive cap over the binding groove (Supplementary Fig. 3). These 
slight conformational changes make this groove a better binding 
site for both benzamidine and presumably the Aβ binding core. 
On the basis of this structural analysis, we hypothesized that the 
binding pockets of Ben 3 and 4 on LilrB2 are the binding sites for 
16KLVFFA21 of Aβ; in the following we provide support for this 
hypothesis by mutagenesis and Rosetta docking.

Validation of the binding sites of LilrB2 by mutagenesis and 
Rosetta docking. We designed three LilrB2 mutations to validate 
the putative binding sites for Aβ. We first chose Asn168 and Val38, 
whose side chains participate in the Ben 3 and 4 pockets, respectively 
(Fig. 2b,c). We mutated both to tryptophan to block these two pock-
ets by creating steric hindrance with the ligands (Supplementary 
Fig. 3). We also designed the D36G mutation to target Asp36, which 
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putatively neutralizes the negative charge of Lys16 of Aβ. The three 
resulting mutant proteins, LilrB2 D1D2 D36G, V38W and N168W, 
bound significantly lower amounts of full-length Aβ as well as the 
16KLVFFA21 tandem repeat (Aβ16-21-TR) compared to wild type at 
the same loading concentration in ELISA-based interaction assays 
(Fig. 3a and Supplementary Fig. 4). Size exclusion chromatography 
shows that all three mutants elute at the same retention volume as 
wild type (Supplementary Fig. 4), and 1H-15N-HSQC spectra show 
that these mutants have similar chemical shift patterns as wild type 
(Supplementary Fig. 4), which suggests that the diminished strength 
of these interactions is not due to changes in overall folding or the 
aggregation state of LilrB2. These results indicate that blocking Ben 
3 and 4 binding pockets by single mutations diminishes the binding 
of LilrB2 for both full-length Aβ and the 16KLVFFA21 tandem repeat. 
Therefore, these results support our hypothesis that Ben 3 and 4 
binding pockets are the binding sites for 16KLVFFA21 in the tandem 
repeat and in full-length Aβ.

To further validate the binding sites on LilrB2 and to develop a 
model of Aβ–LilrB2 interaction, we applied Rosetta flexible peptide 
docking30 to dock the 16KLVFFA21 segment to LilrB2 D1D2. We used 
our crystal structure shown in Fig. 2 as a starting model for LilrB2. 
An antiparallel β-sheet unit was taken from the crystal structure 
of the 16KLVFFA21 steric zipper (PDB ID 3OW928) to represent a 
minimal β-sheet conformation of oligomeric Aβ31, and the tandem 
repeat of Aβ16–21-TR (see Discussion). During docking simulations, 
we confined KLVFFA to contact three key residues (Asp36, Val38 
and Asn168) that we identified as important for Aβ binding in our 
mutagenesis experiments. To minimize the influence of the starting 
orientation of the peptide, we placed two strands of KLVFFA away 

from the groove between the D1 and D2 domains (putative binding 
site) in a random orientation. Notably, we imposed no restraints to 
occupy the putative binding pockets identified in our crystal struc-
ture with benzamidine. For each starting conformation, 50,000 
models were generated and the top 500 models with favourable 
Rosetta energies were further refined by energy optimization. After 
refinement, the five models ranked by Rosetta energies32 and shape 
complementary33 were selected for visual inspection. We found one 
model with two phenylalanine residues located within the binding 
pockets of Ben 3 and 4 (Fig. 3b–d). In this model, two independent 
KLVFFA molecules associated as an antiparallel β-sheet and docked 
in the groove between D1 and D2. Phe20 and Phe19 from separate 
molecules docked in the pockets of Ben 3 and 4, respectively. The 
root-mean-squared deviations of the aromatic rings between phe-
nylalanine residues and benzamidine molecules are 2.3 Å. These 
docking results support our prediction of LilrB2 binding sites and 
provide a putative model of Aβ–LilrB2 interaction. No other plau-
sible Aβ conformation was generated by our computational docking 
that fits two phenylalanines in these putative LilrB2 binding sites.

Structure-based design of Aβ–LilrB2 interaction inhibitors. We 
designed Aβ–LilrB2 interaction inhibitors (ALIs) to occupy the 
binding sites on LilrB2 and prevent Aβ binding, as directed by our 
structural model of the Aβ–LilrB2 complex. Our approach, adapted 
from previous work34, combines knowledge of amyloid structures 
and computational screening to discover small molecules that 
interact with Aβ fibrils and protect cells against their toxicity. We 
searched a compound library of ~32,000 small molecules, includ-
ing approved drugs, drugs in animal tests and clinical trials, and 
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natural products whose pharmacokinetic and/or toxicity profile 
is known (Supplementary Fig. 5 and Supplementary Methods). 
Small molecules that can potentially mimic the conformation of the 
aromatic rings of the ligand in our crystal structure were selected 
and docked to the binding pocket of LilrB2. The compounds were 
then ranked by their predicted binding energy and the similar-
ity between the docked model and the crystal structure. Finally,  
12 top-ranking small molecules (ALI1–12) were chosen for experi-
mental characterization based on their shape similarity, computa-
tional docking energy and potential to cross the blood–brain barrier 
(Supplementary Table 3).

We tested the inhibitory efficiency of all candidates by quantita-
tive immunoprecipitation assays with LilrB2 D1D2 and oligomeric 
Aβ42. At a molar ratio of 1:10:50 (LilrB2:Aβ:inhibitor), 9 of 12 can-
didates show inhibition of the Aβ–LilrB2 interaction with a lower Aβ 
binding signal that was considered to be statistically significant com-
pared to the controls with no inhibitor added (Fig. 4a). Six candidates  

(ALI4, 5, 6, 7, 9 and 10) were selected for concentration-depen-
dent studies, and all inhibited the Aβ–LilrB2 interaction in a 
dose-dependent manner (Fig. 4b and Supplementary Fig. 6). 
Their docking models, created by high-resolution Rosetta dock-
ing, were superimposed with benzamidine and are shown in Fig. 
4c and Supplementary Fig. 6. Statistical analysis of the concentra-
tion-dependent studies shows that all six candidates have a high 
nanomolar to low micromolar Ki and low micromolar IC50 values  
(Fig. 4d). These results suggest that our structure-based design was 
successful in identifying small molecule inhibitors that block the 
Aβ–LilrB2 interaction in vitro.

Tests of inhibitors by cell-based assays. To test the inhibitors on cells, 
we transiently transfected HEK293T cells with full-length LilrB2 with 
monomer red fluorescent protein (mRFP) conjugated at its carboxy 
terminus (LilrB2–mRFP). We then tested the interaction of LilrB2 
with exogenously added oligomeric Aβ42 conjugated at its amino  
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terminus with fluorescein (FITC–Aβ42, Supplementary Fig. 7). 
HEK293T cells transfected with mRFP alone were used as nega-
tive control. After 3 h of incubation with FITC–Aβ42, we fixed and 
washed the cells, and found that cells transfected with mRFP bind 
only 13% of FITC–Aβ42 relative to cells transfected with LilrB2–
mRFP (Fig. 5a,b), consistent with previously reported results using 
HEK293 cells expressing LilrB2 or PirB26. These results indicate 
that LilrB2 induces Aβ–cell interaction. When we added a 10 µ​M 
concentration of our inhibitors to cells before adding FITC–Aβ42, 
we found the amount of bound Aβ42 was significantly reduced; 

the lowest values were 27% (ALI10) and 29% (ALI6) relative to the 
controls in which no inhibitor was added (Fig. 5a,b). These results 
indicate that our selected small molecules inhibit the Aβ–LilrB2 
interaction at the cellular level, and therefore inhibit LilrB2-induced 
Aβ–cell contact.

We selected candidate compound ALI6 to examine its effect 
on the cytotoxicity of Aβ, because ALI6 exhibits the best score in 
the computational docking and the best inhibitory activity both 
in vitro and on cell levels. We transfected HEK293T cells with 
LilrB2–mRFP and treated them with 500 nM oligomeric Aβ42 for  
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24 h. Cell viability (MTT) assays showed that 38% of cells were 
killed relative to controls in which the cells were incubated with PBS 
buffer solutions (Fig. 5c). Further cell viability assays established 
that ALI6 rescues the cells in a dose-dependent manner. When 
the cells were treated with ALI6 5 min before adding Aβ42, 1 µ​M 
ALI6 reduced the cell death to 30%, 2 µ​M ALI6 reduced the cell 
death to 24%, 5 µ​M ALI6 reduced the cell death to 8% and 10 µ​M  
ALI6 reduced the cell death to 7%. Moreover, 10 µ​M ALI6 in the 
absence of Aβ42 showed no effect on cell viability. These results 
suggest that ALI6 inhibits Aβ cytotoxicity.

Validation of ALI6 with primary neurons. Primary neuron mod-
els have been widely used to test Aβ cytotoxicity and the effect 
of Aβ inhibitors, and two known inhibitors of Aβ, curcumin35 
and (–)-epigallocatechin-3-gallate (EGCG)36, have been reported 
to rescue the neurotoxic effects of Aβ. We further validated the 
effect of ALI6 with mouse primary neurons. Cells from cortices 
dissected at embryonic day 15 were dispersed and cultured for 14 
days in vitro (DIV14). Mouse cortical neurons have previously 
been shown to express PirB at DIV1437. Cells were then treated 

with 500 nM FITC–Aβ42 to assess Aβ binding. We found that cells 
pretreated with 10 µ​M ALI6 bound 39.0 ±​ 20.5% (mean ±​ s.d.) of 
FITC–Aβ42 compared to cells pretreated with the same amount of 
DMSO (Fig. 6a,b), indicating that ALI6 inhibits the binding of Aβ 
to neurons. The observation that ALI6 does not fully inhibit Aβ 
binding, even at a higher dose (50 µ​M ALI6 bound 49.9 ±​ 12.3% 
FITC–Aβ42, Fig. 6b), indicates that there are Aβ receptors other 
than LilrB2 on the neuronal cell surface, consistent with the obser-
vation of Aβ42 binding to neuron cells from PirB−/− mice at 50% 
the level of wild-type neurons26.

Although the binding of Aβ was not fully eliminated, we found 
that ALI6 is sufficient in inhibiting Aβ cytotoxicity in primary neu-
rons, similar to curcumin35 and EGCG36. Using terminal deoxynu-
cleotidyl transferase-dUTP nick end labelling (TUNEL) assays to 
detect apoptotic DNA fragmentation, we found that 50.1 ±​ 4.3% of 
the cells treated with Aβ42 and DMSO undergo cell death (Fig. 6c,d).  
When DMSO was substituted with same amount of ALI6 (5 µ​M), 
cell death dropped to 16.5 ±​ 8.9%, equivalent to the vehicle control 
(11.9 ±​ 11.4%) and ALI6 alone (11.0 ±​ 11.6%). These results support 
the potential of ALI6 for rescuing Aβ-caused neuron damage.
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We further tested the effect of ALI6 on the downstream path-
way of LilrB2. A previous study proposed that Aβ–LilrB2 interac-
tion causes dephosphorylation of cofilin, an actin-depolymerizing 
factor, leading to eventual synapse loss26. Indeed, the same study 
showed the ratio of phosphorylated cofilin (p-cofilin) to total 
cofilin decreasing in primary neurons treated with Aβ. Here, 
we also found that on treatment with 150 nM Aβ42 for 1 h, the 
p-cofilin/cofilin level in primary neurons dropped to 67.5 ±​ 8.1% 
of the value seen in cells treated with vehicle alone (Fig. 6e). When 
pretreated with 3 µ​M ALI6, the p-cofilin/cofilin level was restored 
to 101.5 ±​ 7.4% relative to vehicle-treated cells. These results 
indicate ALI6 protects neurons from Aβ-induced changes in the 
cofilin signalling pathway, and further support the therapeutic 
potential of ALI6.

Discussion
Our interaction assays confirm previous reports that LilrB2 recog-
nizes Aβ oligomers26, and suggest a molecular mechanism for the 
specificity of recognition. We first mapped the binding core to the 
segment 16KLVFFA21 of Aβ and tested two binding epitopes: a tan-
dem repeat of 16KLVFFA21 (Aβ16–21-TR) designed to spontaneously 
self-assemble into an antiparallel β-sheet, and a single-copy peptide 
(Aβ16–21-C), which we presume remains single stranded in solution 
under the conditions tested due to an entropy barrier to oligomer 
formation. We found that LilrB2 binds to the tandem repeat but not 
to the single strand (Fig. 1), suggesting that LilrB2 recognizes an 
antiparallel β-sheet conformation specific to Aβ oligomers31.

Several lines of evidence support our hypothesis that Aβ16–21-TR 
is a better mimic of the full-length Aβ oligomer than is Aβ16–21-C. 
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Aβ16–21-TR has more β-strand content than Aβ16–21-C, as indicated 
by a higher ellipticity (circular dichroism) value measured at 
200 nm for the peptides linked to the 5x arginine tag (this tag was 
needed to achieve sufficient solubility) (Supplementary Fig. 2 and 
Supplementary Table 1). Analysis of the circular dichroism spectra 
also showed that the β-strand (antiparallel) content of Aβ16–21-TR is 
higher (33%) than that of Aβ16–21-C (28%). Moreover, when incu-
bated at 37 °C at high concentration (2 mM), Aβ16–21-TR formed 
fibres but Aβ16–21-C did not (Supplementary Fig. 2). Presuming that 
fibrillar and oligomeric species share common structural features, 
these results suggest that Aβ16–21-TR better mimics the full-length 
Aβ oligomer, and explain our observation that it is a better epit-
ope for LilrB2. Finally, the Rosetta docking experiments using as 
input the steric zipper structure of KLVFFA successfully generated a 
model that agrees with our LilrB2–benzamidine complex structure 
within the top 0.1% of Rosetta energy rankings. These results sup-
port our previous hypothesis that β-sheets are not only characteris-
tic of amyloid fibres38 but also of oligomers39,40.

The transient and heterogeneous nature of Aβ oligomers 
makes their structural elucidation extremely challenging. The 
observation that LilrB2 binds to Aβ oligomers with a wide 
range of sizes (Supplementary Fig. 2) also indicates the diffi-
culty of characterizing the structure of an Aβ oligomer–LilrB2 
complex. To gain insights into the structure of this complex, we 
first narrowed the binding core of Aβ to a six-residue segment 
(16KLVFFA21), and identified its binding site on LilrB2 through 
the structure of LilrB2 with a small molecule that mimics the 
phenylalanine side chains of the Aβ binding core. The binding 
sites were validated by mutagenesis and Rosetta docking, and 
then used for structure-based inhibitor design. Our results show 
that the LilrB2 D1D2–benzamidine complex structure we deter-
mined provides a platform sufficient for inhibitor development 
of the Aβ–LilrB2 interaction.

In addition to LilrB2, other putative Aβ receptors have been 
reported to bind Aβ oligomers and cause neuronal damage25. Our 
rationale for choosing LilrB2 as a target for inhibitor design is that 
an animal model shows that mice lacking PirB (the murine homo-
logue of LilrB2) are immune to the damaging effects of Aβ in hippo-
campal long-term potentiation (LTP) and memory26. One reason to 
suppose that blocking only the LilrB2 receptor might be sufficient to 
inhibit Aβ toxicity is that blockade of one high-affinity Aβ receptor 
may sufficiently reduce the contact of Aβ with cells. This hypothesis 
is supported by the observation that Aβ42 oligomer binding to cul-
tured cortical neurons from PirB–/– mice is diminished by about 50% 
relative to wild-type neurons26. In AD patients, this reduction may 
be sufficient to move the equilibrium from Aβ–cell contact to Aβ 
clearance41, thus inhibiting Aβ-triggered neuronal toxicity. Our cell 
viability assays on primary neurons support this hypothesis, which 
show ALI6 can almost completely block the effect of Aβ (Fig. 6d).  
Further study is required to identify the possibility that our inhibi-
tor can also work on other Aβ receptors.

Compared to other AD drug development strategies that target 
Aβ aggregation15–17 or bind monomeric Aβ with antibody42, target-
ing Aβ oligomer is advantageous because the inhibitor does not need 
to be added before Aβ aggregation. When testing the inhibition of 
Aβ cytotoxicity, Aβ monomer or aggregation targeting inhibitors 
need to be co-incubated with Aβ from the beginning of Aβ aggre-
gation15, so presumably these inhibitors can only treat early-stage 
AD patients before massive Aβ aggregation forms. This may be part 
of the reason why solanezumab, an antibody targeting monomeric 
Aβ, failed in a recent clinical trial43. In comparison, all of our inhi-
bition experiments were done by separately adding inhibitors and 
preformed Aβ oligomer, offering the possibility of treating patients 
that already have Aβ aggregation in their brains.

The structure-based approach has been shown to be a power-
ful tool for drug development5,44. In this study, we computationally 

identified 12 candidate inhibitors by structure-guided selection. 
Nine out of 12 candidates show inhibition of the Aβ–LilrB2 inter-
action in vitro; six candidates were selected for further testing, 
and all of them exhibit low micromolar to high nanomolar Ki and 
IC50 values. These inhibitors eliminate the effects of Aβ–LilrB2 
binding on the cell surface, and candidate ALI6 inhibits Aβ bind-
ing and cytotoxicity to primary neurons. Our results support the 
hypothesis that blocking this Aβ–receptor interaction is a poten-
tial way to inhibit Aβ toxicity and prevent neuron damage, and that 
LilrB2 is a promising therapeutic target. In addition, the compound 
library we used for computational inhibitor selection is composed 
of approved drugs, drugs in animal tests and clinical trials, and 
natural products whose pharmacokinetic and/or toxicity profile is 
known. During the inhibitor selection process, we also checked the 
potential of the selected compounds to cross the blood–brain bar-
rier (Supplementary Table 3). This strategy ensures that our selected 
inhibitors, for example, ALI6, are safe for human use and are able to 
cross the blood–brain barrier. These properties make these inhibi-
tors useful tools in further investigating the role of LilrB2 in the 
pathogenesis of AD, and qualifies them as promising candidates 
for expediting further AD drug development. We also note that the 
concentrations of inhibitors we used are high and might be diffi-
cult to achieve in vivo. Our proof-of-concept study provides several 
promising starting points for drug development, and further work 
is needed to improve the affinity of these inhibitors to increase their 
translational values.

Methods
The methods and materials used in this study are available in the Supplementary 
Information.

Reporting summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The crystal structure reported here, LilrB2 D1D2 complexed with benzamidine, 
and the corresponding diffraction data have been deposited to the Protein Data 
Bank (PDB) with the accession code 6BCS. All other data are available upon 
reasonable request to the authors.
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    Experimental design
1.   Sample size

Describe how sample size was determined. Sample sizes were chosen to be 3 or 4 because they are generally 
considered as sufficient for 96-well plate based experiments, and 
generated acceptable P values in statistic analysis.

2.   Data exclusions

Describe any data exclusions. No data were excluded from the analysis.

3.   Replication

Describe whether the experimental findings were reliably reproduced. All attempts at replication were successful.

4.   Randomization

Describe how samples/organisms/participants were allocated into 
experimental groups.

Randomization is not relevant to our study. No research animals, human 
research participants or clinical studies are involved in our study. The 
samples we used are aqueous solutions. The allocations of each sample 
were extracted from a single falcon tube, eliminating differences in sample 
preparation. 

5.   Blinding

Describe whether the investigators were blinded to group allocation 
during data collection and/or analysis.

Blinding was not relevant to our study, because all experiments were done 
on 96-well plates and quantified by plate reader. No subjective analysis 
were required.

Note: all studies involving animals and/or human research participants must disclose whether blinding and randomization were used.

6.   Statistical parameters 
For all figures and tables that use statistical methods, confirm that the following items are present in relevant figure legends (or the Methods 
section if additional space is needed). 

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement (animals, litters, cultures, etc.)

A description of how samples were collected, noting whether measurements were taken from distinct samples or whether the same sample 
was measured repeatedly. 

A statement indicating how many times each experiment was replicated

The statistical test(s) used and whether they are one- or two-sided (note: only common tests should be described solely by name; more 
complex techniques should be described in the Methods section)

A description of any assumptions or corrections, such as an adjustment for multiple comparisons

The test results (e.g. p values) given as exact values whenever possible and with confidence intervals noted

A summary of the descriptive statistics, including central tendency (e.g. median, mean) and variation (e.g. standard deviation, interquartile range)

Clearly defined error bars

See the web collection on statistics for biologists for further resources and guidance.
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   Software
Policy information about availability of computer code

7. Software

Describe the software used to analyze the data in this study. Graphs were plotted in Excel 2016 (version 15.29.1),  KI and IC50 was 
calculated using GraphPad Prism (version 7.0c). Statistical significance was 
calculated by online t test calculator GraphPad QuickCalcs. Diffraction data 
was indexed, merged and scaled with XDS and XSCALE (version May 1, 
2016). Molecular replacement was performed with Phaser (version 2.5.5), 
and refinements were performed using Phenix (version 1.12.2829) and 
Coot (veriosn 0.8.9.1). NMR spectra were processed with TopSpin (version 
3.5 pl 2) and analyzed with Sparky (version 3.114). Computational docking 
was performed by Rosetta software package (version 3.5) and high-
throughput docking was performed by Glide Maestro (version 5.6) in 
Schrödinger suite package. The CD spectra were analyzed by the online 
software BeStSel. The intensity of cofilin bands were measured by ImageJ 
(version 1.51j8). The cell confluency, integrated intensity of green and red 
fluorescence in each well was calculated by Celigo (version 4.1.3.0). 

For all studies, we encourage code deposition in a community repository (e.g. GitHub). Authors must make computer code available to editors and reviewers upon 
request.  The Nature Methods guidance for providing algorithms and software for publication may be useful for any submission.

   Materials and reagents
Policy information about availability of materials

8.   Materials availability

Indicate whether there are restrictions on availability of unique 
materials or if these materials are only available for distribution by a 
for-profit company.

No unique materials were used.
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9.   Antibodies

Describe the antibodies used and how they were validated for use in 
the system under study (i.e. assay and species).

i) clone name, 6E10; provide supplier name, BioLegend (previously 
Convance); catalog number, SIG-39320; host species, mouse; application, 
ELISA, WB, IHC, IP; dilution, 1:5000; application reference (selected), 1. 
Thakker DR, et al. Intracerebroventricular amyloid-beta antibodies reduce 
cerebral amyloid angiopathy and associated micro-hemorrhages in aged 
Tg2576 mice. Proc Natl Acad Sci USA Feb 25, 2009. 2. Klyubin I, et al. 
Amyloid beta protein immunotherapy neutralizes Abeta oligomers that 
disrupt synaptic plasticity in vivo. Nat Med 11(5):556-61, 2005. 
ii) clone name, 4G8; provide supplier name, BioLegend (previously 
Convance); catalog number, SIG-39200; host species, mouse; application, 
ELISA, WB, IHC, IP; dilution, 1:1000; application reference (selected), 1. 
Thakker DR, et al. Intracerebroventricular amyloid-beta antibodies reduce 
cerebral amyloid angiopathy and associated micro-hemorrhages in aged 
Tg2576 mice. Proc Natl Acad Sci USA Feb 25, 2009. 2. Kimura N, et al. Age-
related changes of intracellular Abeta in cynomolgus monkey brains. 
Neuropath Appl Neurobiol 31(2):170-80, 2005. 
iii) clone name, β 37-42; provide supplier name, Millipore Sigma; catalog 
number, AB5306; host species, rabbit; application, ELISA, IH(P); dilution, 
1:500; application reference (selected), 1. Marksteiner, J; Humpel, C. Beta-
amyloid expression, release and extracellular deposition in aged rat brain 
slices. 
Molecular psychiatry  13  939-52  2008. 2. Takashi Togo, Dennis W 
Dickson, Takashi Togo, Dennis W Dickson. Tau accumulation in astrocytes 
in progressive supranuclear palsy is a degenerative rather than a reactive 
process. Acta neuropathologica  104  398-402  2002 
iv) name, Anti-Mouse IgG (whole molecule)-Peroxidase antibody; provide 
supplier name, Sigma-Aldrich; catalog number, A4416; dilution, 1:5000. 
v) name, Anti-Rabbit IgG (whole molecule)-Peroxidase antibody; provide 
supplier name, Sigma-Aldrich; catalog number, A0545; dilution, 1:5000. 
vi) name, Cofilin (D3F9) XP Rabbit mAb #5175; provide supplier name, Cell 
Signaling Technology; catalog number, 5175S; host species, rabbit; 
application, FC/FACS, ICC, IF, IHC, WB; dilution, 1:1000; application 
reference (selected), Megaw R. et al., Gelsolin dysfunction causes 
photoreceptor loss in induced pluripotent cell and animal retinitis 
pigmentosa models. Nature Communications, 2017. 
vii) name, phospho-Cofilin (Ser3) (77G2) Rabbit mAb #3313; provide 
supplier name, Cell Signaling Technology; catalog number, 3313S; host 
species, rabbit; application, IF and WB; dilution, 1:500; application 
reference (selected), Megaw R. et al., Gelsolin dysfunction causes 
photoreceptor loss in induced pluripotent cell and animal retinitis 
pigmentosa models. Nature Communications, 2017. 
viii) name, Anti-Tubulin β-3 (TUBB3) antibody; provide supplier name, 
BioLegend; catalog number, 802001; host species, rabbit; clone name, 
Poly18020; dilution, 1:5000; application reference (selected) Feuer R, et al. 
2005. J. Neurosci. 25(9):2434-44. Mozzetti S, et al. 2005. Clin. Cancer Res. 
11(1):298-305.

10. Eukaryotic cell lines
a.  State the source of each eukaryotic cell line used. HEK293T cell line was from Prof. Samuel W. French's lab at UCLA

b.  Describe the method of cell line authentication used. None of the cell lines used were authenticated by us

c.  Report whether the cell lines were tested for mycoplasma 
contamination.

None of the cell lines used were tested for mycoplasma contamination by 
us

d.  If any of the cell lines used in the paper are listed in the database 
of commonly misidentified cell lines maintained by ICLAC, 
provide a scientific rationale for their use.

No commonly misidentified cell lines were used
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    Animals and human research participants
Policy information about studies involving animals; when reporting animal research, follow the ARRIVE guidelines

11. Description of research animals
Provide details on animals and/or animal-derived materials used in 
the study.

Male and female embryos (embryonic day 15) from pregnant CD-1 mouse 
dams.

Policy information about studies involving human research participants

12. Description of human research participants
Describe the covariate-relevant population characteristics of the 
human research participants.

The study did not involve human research participants 
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