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Disruption of gene silencing by Polycomb protein  
complexes leads to homeotic transformations and altered 
developmental-phase identity in plants1–5. Here we define 
short genomic fragments, known as Polycomb response 
elements (PREs), that direct Polycomb repressive complex 
2 (PRC2) placement at developmental genes regulated by 
silencing in Arabidopsis thaliana. We identify transcription 
factor families that bind to these PREs, colocalize with PRC2 
on chromatin, physically interact with and recruit PRC2, 
and are required for PRC2-mediated gene silencing in vivo. 
Two of the cis sequence motifs enriched in the PREs are 
cognate binding sites for the identified transcription factors 
and are necessary and sufficient for PRE activity. Thus PRC2 
recruitment in Arabidopsis relies in large part on binding of 
trans-acting factors to cis-localized DNA sequence motifs. 

In both the plant and animal kingdoms, Polycomb-mediated gene 
repression is important for cell identity2,5–8. The evolutionar-
ily conserved PRC2 induces trimethylation of histone H3 at Lys27 
(H3K27me3), an epigenetic mark that results in compaction of chro-
matin and silencing of gene expression at thousands of loci1–5,8,9. After 
its establishment, the repressed chromatin state is mitotically herit-
able8,10. Given that PRC2 has no inherent DNA binding specificity, a 
key question is how the Polycomb epigenetic machinery targets the 
loci it silences. In Drosophila melanogaster, multiple transcription fac-
tors (TFs) bind to cis-regulatory regions several hundreds of base pairs 
in length called PREs and recruit Polycomb complexes8,9. Although 
a few such PREs were initially identified in mammals, recent studies 
instead implicate promoter-proximal unmethylated CpG islands in 
PRC recruitment7. Likewise, PREs with inherent silencing ability have 
been identified at a handful of loci in Arabidopsis10–14, but it is unclear 
whether this mechanism broadly underpins PRC2 recruitment.

To elucidate the PRC2 targeting mechanism in Arabidopsis, we 
identified 132 high-confidence PRC2-regulated genes from our 
own and public genomic data sets15–17 (Supplementary Fig. 1a 
and Supplementary Tables 1 and 2) and computationally defined 
170 candidate PREs (600 bp in length) associated with them. We 
selected five PREs from three loci—the PRC2 targets AGAMOUS 
(AG) and SEPALLATA3 (SEP3)2,18 and a gene of unknown function, 
At5g61120 (At5g)—to test their ability to recruit PRC2 and direct  
de novo H3K27me3 when randomly integrated into the genome. All 
five candidate plant PREs recruited PRC2 (represented by complex 
components FIE, EMF2 and MSI1; Supplementary Fig. 1b) and 
gained H3K27me3, as did a previously characterized PRE used as a 
positive control (PC_LEC2)12 (Fig. 1a,b and Supplementary Fig. 2a,b; 
n = 40 transgenic lines). H3K27me3 is known to spread from the site 
of PRC2 recruitment to adjacent genomic locations8,9; this was also 
observed at the PREs (Supplementary Fig. 2a,b). Random unlinked 
(NC_1 and NC_3) and linked (NC_2, linked with the AG locus) DNA 
fragments did not recruit PRC2 and or gain H3K27me3.

In Drosophila, PREs not only recruit Polycomb complexes and 
become decorated with H3K27me3, but also repress linked genes in a 
Polycomb-dependent manner8,9. Likewise, when placed between two 
constitutive promoters, the five candidate PREs significantly (P < 0.05, 
Mann–Whitney U-test) silenced three independent reporter genes 
(encoding GFP fluorescence, -glucuronidase activity and herbicide 
resistance, respectively), as did PC_LEC2 (Fig. 1c,d, n = 15 inde-
pendent transformants; Supplementary Fig. 2c,d, n = 15 independ-
ent transformants; and Supplementary Fig. 2e, n = 60 independent 
transformants). None of the negative-control DNA fragments had this 
effect. The ability of the PREs to silence active reporters was depend-
ent on PRC2 in all cases (Fig. 1d and Supplementary Fig. 2d,e).

To determine which sequence-specific binding proteins associate 
with the five functional PREs, we performed high-throughput DNA 
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binding assays using a library of 1,956 Arabidopsis TFs19. Our screen 
identified 233 PRE-binding TFs (Supplementary Table 3). We selected 
55 TFs belonging to 20 families for further characterization on the 
basis of significant binding to multiple PREs (Supplementary Table 3).  

The three families most enriched with PRE-associated TFs each 
contained a highly enriched subfamily (Fig. 2a and Supplementary 
Table 3): the C2H2 zinc-finger (ZnF) family20 (C1-2iD subfamily; 4 
of 6 members identified), the plant-specific APETALA2-like family21 
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(AP2 subfamily; 2 of 6 members identified) and the plant-specific 
BASIC PENTACYSTEINE (BPC) family22 (class I subfamily; 2 of 3 
members identified).

In yeast two-hybrid tests, more than 50% of the 55 PRE-interacting 
TFs—including all of the identified TFs from the C1-2iD ZnF, AP2 and 
class I BPC subfamilies—physically interacted with at least one PRC2 
component (Fig. 2b,c, Supplementary Fig. 3a and Supplementary 
Table 3). We confirmed contact between certain members of these TF 
subfamilies (TOE1, AZF1and BPC1) and PRC2 (represented by FIE) 
by using bimolecular fluorescence complementation (BiFC) in plant 
cells (Fig. 2d,e and Supplementary Fig. 3b). We did not observe any 
BiFC signal for members of closely related TF subfamilies (Fig. 2d,e).  
Using plants stably expressing tagged versions of TOE1, AZF1 and 
BPC1 from their endogenous promoters, we showed that the TFs 
coimmunoprecipitated with PRC2 (FIE) in intact plants (Fig. 2f). 
Coimmunoprecipitation was also observed in the presence of an 
endonuclease (Supplementary Fig. 3c).

In a parallel approach, we identified six motifs enriched in the 170 
computationally defined PREs with a de novo motif analysis pipeline23 
(Fig. 3a,b and Supplementary Table 2). Many of these motifs, in par-
ticular the GA repeat and the telobox, have previously been correlated 
with Polycomb occupancy in Arabidopsis15,24–27. To investigate the 
biological roles of the GA repeats and telobox motifs in Polycomb-
mediated silencing, we mutated both motifs in the PREs AG_2 and 
At5g (Fig. 1). Mutation of GA repeats and telobox motifs signifi-
cantly reduced the ability of both PREs to silence an active reporter  
(Fig. 3c). The residual activity of the mutated PREs suggests the pres-
ence of additional cis motifs with a role in PRC2 recruitment. The GA 
repeats and telobox motifs of the AG_2 and At5g PREs are conserved 

in species of the Brassicaceae family (Fig. 3d). Moreover, the addition 
of two GA repeats and two teloboxes to a DNA fragment that does 
not recruit PRC2 (NC_1; Fig. 1b) created a synthetic PRE (NC+) that 
significantly silenced an active reporter in a PRC2-dependent manner 
(Fig. 3c). Overall, the data suggest that the GA-repeat motif and the 
telobox motif are necessary and sufficient for PRE activity.

Prior studies identified GA repeats as the cognate binding sites of 
TFs from the class I BPC subfamily28. We used an electrophoretic 
mobility shift assay (EMSA) to confirm binding of BPC1, a PRC2-
interacting class I BPC TF (Fig. 2), to the GA repeat (Supplementary 
Fig. 4a). We also conducted a motif-based DNA-interaction screen 
for TFs that bind the telobox. The screen identified members of 
the PRE-binding and PRC2-interacting C1-2iD ZnF subfamily 
(Supplementary Fig. 4b,c). EMSA confirmed that AZF1, a C1-2iD 
TF, associates with the telobox (Fig. 3e). Our findings link sequence 
motifs important for PRE function to recruitment of TFs that physi-
cally interact with PRC2.

We next assessed the genome-wide overlap in chromatin occupancy 
of PRC2 (FIE) and the two TF families (AZF1 and BPC1) in 30-h-old 
plants, at a stage when PRC2 function becomes essential for plant 
development29. Significant (Q < 10−10) binding peaks of FIE, AZF1 and 
BPC1 colocalized with each other and with H3K27me3 peaks, both 
globally and at individual loci (Fig. 4a,b and Supplementary Fig. 5).  
We found that 23% of all FIE-bound regions overlapped with BPC1 
peaks, while 28% overlapped with AZF1 peaks (Fig. 4c). This overlap 
was significantly larger than expected by chance for the peak-associated  
genes (P < 10−307 and P < 10−105 (hypergeometric test), respectively). 
In total, 1,804 FIE peaks (35%) overlapped with an AZF1 or a BPC1 
peak, and at 42% of these peaks both TFs were present (Fig. 4d). 
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Cognate binding motifs (GA repeat and telobox) of the class I BPC and 
the C1-2iD ZnF TFs were also significantly (P < 10−38 and P < 10−219, 
respectively) enriched under the FIE binding peaks (Supplementary 
Fig. 5d). Gene Ontology term enrichment analysis linked the FIE, 
AZF1and BPC1 targets to shoot development, flower patterning and 
gynoecium development (Supplementary Fig. 5e).

Characteristic phenotypes associated with mutation of the PRC2 
methyltransferase CLF are upward-curled leaves with partial flo-
ral identity as well as precocious flowering2. Higher-order mutants 
from the class I BPC TFs or the C1-2iD ZnF TFs do not exhibit these 
phenotypes30,31 (Supplementary Fig. 6), suggesting combinatorial 
roles for the two TF families in Polycomb-mediated silencing. Two 
pieces of evidence support this idea. First, knockdown of either TF 
family significantly (P < 0.05) enhanced the leaf curling and the pre-
cocious flowering of the hypomorph clfR mutant18 (Supplementary 

Figs. 7 and 8). Second, simultaneous knockdown of both TF fam-
ilies (BPC+ZnFKD) in the wild type triggered upward leaf curling 
and precocious flowering (Fig. 5a,b). The BPCKDclfR, ZnFKDclfR and 
BPC+ZnFKD phenotypes were accompanied by a significant reduction 
in PRC2 (FIE) occupancy and in H3K27me3 at Polycomb target loci, 
and by significant derepression of the Polycomb targets (Fig. 5c–e 
and Supplementary Figs. 7–9). FIE occupancy (at peaks with Q < 
10−10 in the wild type) was also reduced genome-wide in 30-h-old 
BPC+ZnFKD plants (Fig. 5f,g and Supplementary Fig. 10). By con-
trast, occupancy of BPC1 at a Polycomb target locus was not depend-
ent on the presence of PRC2 (Supplementary Figs. 11 and 12).

Finally, we assessed the contribution of AZF1 and BPC1 to PRC2 
recruitment by reciprocal gain-of-function tests. Tethering both the 
AZF1 and the BPC1 TF to an artificial promoter in isolated plant 
cells (protoplasts) triggered levels of FIE recruitment similar to 
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those observed at an endogenous Polycomb target locus (Fig. 6a). 
In addition, overexpression of BPC1 or AZF1 in clfR plants restored 
PRC2 occupancy and H3K27me3 at Polycomb target loci to nearly 
wild-type levels and largely rescued the leaf-curling defect of clfR 
(Supplementary Fig. 12). These findings suggest combinatorial roles 

for class I BPC and C1-2iD ZnF TFs in Polycomb-mediated silencing 
and PRC2 recruitment.

Here we uncover a PRC2-recruitment strategy in Arabidopsis that 
is similar to that in Drosophila, including roles for GA-repeat-binding  
and ZnF TFs in recruitment (Fig. 6b)7–9. Further support for our 
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(center) and in BPC+ZnFKD (bottom).
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findings comes from a recent study of PRC2 recruitment to the 
ABI4 locus32. Our data suggest that a similar logic underpins PRC2 
recruitment in species from two kingdoms of life. The plant PREs 
we uncovered may recruit both PRC2 and PRC1, as GA repeats and 
telobox motifs are also linked to PRC1 occupancy in Arabidopsis26,27. 
Additional PREs besides those we predicted probably exist and may 
act at different stages and in different tissues or conditions. Likewise, 
additional determinants of PRC2 recruitment remain unidentified. 
Their discovery, combined with the current data, should enable com-
putational prediction of PREs for future epigenetic reprograming of 
cell identity or function to enhance plant growth and yield.

URLs. R packages used: vioplot, https://cran.r-project.org/web/
packages/vioplot/index.html; LOESS smoothing, https://stat.ethz.
ch/R-manual/R-devel/library/stats/html/loess.html; PCC analysis, 
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/cor.html;  
PCA analysis, https://stat.ethz.ch/R-manual/R-devel/library/stats/

html/prcomp.html. Motif analysis: Meme, http://meme-suite.org/
doc/download.html; Weeder http://159.149.160.51/modtools/; 
MotifSampler, http://bioinformatics.intec.ugent.be/MotifSuite/
motifsampler.php; AlignAce, http://arep.med.harvard.edu/mrna-
data/mrnasoft.html; BioProspector, http://ai.stanford.edu/~xsliu/
BioProspector/; Cistome http://bar.utoronto.ca/cistome.

METHODS
Methods, including statements of data availability and any associated 
accession codes and references, are available in the online version of 
the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METHODS
Plant material and treatment. Mutants and transgenic plants previously 
described: clf-28, clf-28 swn-7 (ref. 33); clf-50, clfR (pCLF:CLF-GR clf-50)18; 
bpc123 (ref. 22); pFIE:FIE-HA fie-11 (ref. 34); pEMF2:EMF2-3XFLAG emf2 
(ref. 35); pMSI1::GFP-MSI1 msi1-1 (ref. 36); 35S::GFP-CLF clf-50 (ref. 37). In 
clfR, the clf-50 RNA null mutant is partly rescued by ‘leaky’ nuclear transloca-
tion of pCLF:CLF-GR in the absence of steroid treatment. clf-50 and clfR are in 
the Ws accession, pFIE:FIE-HA fie-11 is in the C24 accession, all other plants 
are in the Col-0 accession.

PRE tests. To test PRC2 recruitment and H3K27me3 enrichment at PREs 
or control fragments, we analyzed progeny pools of 40 random T1 plants. 
We adopted this strategy to minimize outliers caused, for example, by posi-
tion effect. Independent pools tested gave similar results. Control fragments 
included a known PRE (PC_LEC2) and three random DNA fragments (NC_
1, intron of At1g60200; NC_2, promoter of AG; NC_3, 3  UTR of Actin 2 
(At3g18780)). GFP intensity was scored visually with a dissecting fluorescence 
microscope (Olympus, MVX10). A fluorometric (MUG) assay was used to 
quantify -glucuronidase (GUS) activity as previously described38,39, except 
that the 4-MU produced was normalized over the fresh weight of each plant. 
GFP and GUS reporter silencing was assayed in independent primary trans-
formants (T1 plants). For the herbicide-resistance assay, primary transform-
ants were transplanted into soil after selection and sprayed with the Basta 
herbicide (200 mg/l) (Bayer Crop Science) 2–3 d after transplanting. The 
survival rate was scored 5–7 d later.

Transgenic plants. Candidate PRE DNA fragments (~600 bp in length) were 
cloned into pFK205 (ref. 40) and transformed into wild type (Col-0), pMSI1:
GFP-MSI1 msi1-1 or pEMF2:EMF2-3XFLAG emf2 for chromatin immuno-
precipitation (ChIP) assays. Plants were selected on 1/2 Murashige and Skoog 
(MS) medium41 (Sigma) with 40 mg/l kanamycin.

A dual reporter system (pPRE-dual-rep) was generated containing the 
FLAVANONE 3-HYDROXYLASE regulatory region plus the 35S minimal pro-
moter (pF3H-35S mini) driving expression of GFP and -glucuronidase, and 
the mannopine synthase promoter (pMAS) driving the BAR gene. Candidate 
PRE or control fragments were cloned into pPRE-dual-rep and transformed 
into the wild type (Col-0) or prc2 mutants (clf-28, clf-28 swn-7/+). PRE frag-
ments for test of loss or gain of GA repeat and telobox motifs were synthesized 
(see Supplementary Table 5) (GenScript Inc. Company, Piscataway, NJ, US) 
and shuffled into pPRE-dual-rep. Plants were selected on 1/2 MS plates with 
25 mg/l hygromycin.

For TF knockdown, 300-bp regions conserved in the PRC2 recruiting TF 
subfamilies (for example, C1-2iD ZnF) but not in the larger TF family (C1-2i 
ZnF) were PCR-amplified and inserted into vector pRNAi-GG. Plasmids were 
introduced into Agrobacterium tumefaciens strain GV3101 and transformed 
into clfR and wild-type plants by floral dip42. T1 plants were selected on 1/2 
MS plates with 40 mg/l kanamycin. BPCKD plants were crossed with ZnFKD 
plants to generate double-knockdown lines.

For overexpression of BPC1 or AZF1 in clfR, the cDNA of BPC1 and AZF1 was 
cloned into vector pGWB12 (ref. 43). Plasmids were introduced into A. tume-
faciens strain GV3101 and transformed into clfR by floral dip42. T1 plants were 
selected on 1/2 MS plates with 40 mg/l kanamycin and 20 mg/l hygromycin.

For TF CoIP and ChIP, genomic fragments spanning the upstream inter-
genic region and the coding region for each TF were PCR amplified (BPC1 
(−3,225 to +849 bp), AZF1 (−1,628 to +735 bp), TOE1 (−8,685 to +1,353 bp), 
TRB2 (–1,194 to +1,227 bp)), cloned into pEG303 (ref. 44) and transformed 
into pFIE:FIE-HA fie-11 for CoIP and into the wild type (Col-0) for ChIP.

Phenotype quantification and qRT-PCR. Plants were grown at 22 °C in 
short-day conditions (8 h light/16 h dark, light intensity: ~140 mol/m2/s). 
The length and width of the blade of the fifth rosette leaf were measured for 
>15 plants at day 20. RNA was extracted from 3- to 7-d-old plants grown 
in short-day conditions, and quantitative real-time PCR was performed as 
previously described45.

Identification of CLF-binding sites using ChIP-chip. ChIP was con-
ducted with anti-GFP (Molecular Probes) in 35S::GFP-CLF clf-50 plants37 as  

previously described17. Four independent replicates were performed. 
Amplification, labeling and microarray hybridization were as reported46. We 
identified genomic regions enriched for CLF-binding sites by comparing CLF 
ChIP-chip to input DNA (four replicates), using the Tilemap program with 
the hidden Markov model (HMM) option47. We merged adjacent probes with 
HMM posterior probabilities of P > 0.5 or higher into regions by requiring a 
minimal run of 50 bp and allowing a maximal gap of 200 bp, and we converted 
TAIR5 coordinates to TAIR10 coordinates with the ‘update_coordinates.pl’ 
script from TAIR. The 3,648 regions enriched for CLF binding are listed in 
Supplementary Table 1.

Identification of candidate PREs. Putative PRE-containing regions were 
identified on the basis of the following two conservative criteria. First, we 
compared previously published genome-wide distributions of H3K27me3, 
EMF1 and FIE15–17 with that of CLF generated in this study. EMF1 is a puta-
tive PRC1 component that frequently colocalizes with PRC2 (ref. 16). A 
candidate PRE-containing region was required to overlap with at least three 
of the four data sets (to account for potential false negative results in these 
data sets and the redundant contribution of other PRC components). A total 
of 1,504 regions were identified and assigned to 851 Arabidopsis genes on 
the basis of previously described criteria23. Second, we required target genes 
associated with these putative PREs to be expressed in a highly tissue-specific  
manner or be derepressed in prc2 mutants (clf swn and fie)15,33. For the former, 
we analyzed previously published transcription profiles in different tissues48, 
and defined tissue-specifically expressed genes as those with expression  
levels higher than 5× the baseline levels. Since all ChIP data (FIE, CLF, EMF1, 
H3K27me3) were from vegetative development, baseline was defined as the 
mean expression in samples ATGE_7, ATGE_87, ATGE_12, ATGE_26, 
ATGE_1, ATGE_19, ATGE_15, ATGE_13, ATGE_20, ATGE_21, ATGE_14, 
ATGE_17, ATGE_18, ATGE_91, ATGE_5, ATGE_16, ATGE_11 and ATGE_10 
from AtGenExpress48. PRE-linked genes derepressed in clf swn or fie were 
defined as in refs. 15,33. The combined expression filters resulted in the iden-
tification of 132 high-confidence PRC2-regulated genes. 170 candidate PREs 
were associated with the 132 PRC2-regulated genes. Five of the candidate PREs 
were selected for in planta PRE tests.

Motif prediction and mapping. De novo motif prediction was performed 
as previously published, with minor changes23,49–51. Briefly, we applied the 
motif-prediction pipeline to a subset of the candidate PREs (those bound 
by CLF and FIE and marked by H3K27me3; 70 PREs) to enhance prediction 
performance and lower false positive rates52. Motifs were subsequently tested 
for enrichment within the entire PRE set. Motif width was set from 6 to 16 
bp when applicable. The background set consisted of 600-bp genic terminal 
regions from the TAIR10 genome15. Motif enrichment was calculated using 
a non-parametric deterministic sampling as described previously (Z  3; P < 
0.027)23. We filtered highly degenerate motifs from the results by using an 
information quality statistic (IQ > 20) defined as 

IQ L,A
L,A

A
L

L
N

F
P

log2

where NL,A is the count of residue type A at position L, FL,A is the frequency 
of occurrence of the residue of type A at position L in the PSSM, and PA is the 
background frequency expected for residue A.

Predicted PSSMs were aligned by position of maximum average site-wise 
Euclidean distance and hierarchically clustered in the R statistical program-
ming environment. We then chose a representative consensus PSSM from the 
PSSMs in each clade, along with a merged candidate, by maximizing for sig-
nificance score and frequency within target genes. A functional-depth cutoff 
was used in mapping PSSMs to PREs and to genomic and ChIP data sequence 
sets (GAGA, 0.62; CTCC, 0.42; and CCG, 0.8 and 0 for telobox, CAA repeats 
and G-box). When mapping GAGA motif occurrences, we merged overlapping 
and nearby matches into a common region using the BEDTools merge function 
with a maximum distance between features of 8 bp (ref. 53).

Yeast two-hybrid tests. EMF2, CLF, MSI1, and FIE coding sequences were 
cloned into pDEST32 (Clontech) and introduced into yeast strain AH109 
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(MAT a). Full-length clones were used except for EMF2 and CLF. EMF2-C is 
a better interactor in yeast, and CLF-N overcomes the growth defects caused 
by full-length CLF54. The 55 PRE-interacting TFs were cloned into pDEST22 
(Clontech) and transfected into yeast strain Y187 (MAT ). Protein−protein 
interactions were tested after mating as described in the Matchmaker protocol 
(Clontech). We quantified interaction strength for a subset of TFs via o-nitro-
phenyl- -d-galactopyranoside (ONPG) assays55 for nine independent colonies 
for each interaction pair in three pools. In addition, different TF fragments 
(AZF1-N, 1–90 aa; AZF1-M, 91–194 aa; AZF1-C, 195–245 aa; BPC1-N, 1–140 
aa; BPC1-C, 141–283 aa; TOE1-N, 1–151 aa; TOE1-M, 152–310 aa; TOE1-C, 
311–464 aa) were cloned into pDEST22 and cotransformed with EMF2C or 
CLFN into yeast strain AH109, and yeast growth was scored.

Bimolecular fluorescence complementation (BiFC) assays. FIE and all 
TFs were cloned into pUC-SPV-NEGW and pUC-SPV-CEGW constructed by 
shuffling the split Venus-Gateway cassette from pDEST-VYNE/CE(R)GW vec-
tors56 into pUC18. BiFC assays in Arabidopsis protoplasts were conducted 
and visualized as previously described57,58. For each experiment, fluorescence 
was compared in protoplast populations prepared and transfected at the same 
time. Three independent BiFC experiments were performed for each com-
bination of factors tested with at least150 protoplasts scored per replicate. 
Representative images were taken with a confocal microscope with the same 
gain (Leica, LCS SL).

CoIP. CoIP was performed as described59, with some modifications. Myc-
gBPC1, Myc-gAZF1, Myc-gTOE1 or Myc-gTRB2 (TELOMER REPEAT 
BINDING 2 protein, negative control) was transformed into pFIE:FIE-HA 
fie-11 plants. Three-day-old double-transgenic seedlings were harvested after 
growth in long-day conditions. Tissue was ground in protein extraction buffer 
(20 mM Tris-HCl, pH 8.0, 150 mM NaCl, 1 mM EDTA, 10% glycerol, 0.2% 
Triton X-100, 1 mM PMSF, 1× protease inhibitor (Roche)), filtered, and centri-
fuged. The supernatant was incubated with anti-Myc (C3965 or 05-724, Sigma) 
coupled to protein A Dynabeads (Thermo Fisher) overnight at 4 °C. Beads 
were washed four times with wash buffer, and bound proteins were eluted 
with elution buffer containing 2% SDS for immunoblotting with HA-HRP- 
conjugated antibody (3F10, Roche). In some reactions Benzonase endonuclease  
(E1014, Sigma) was added into the protein sample (20 U) and incubated on 
ice for 1 h before immunoprecipitation. Full-length gel images for Western 
analyses after coIP and for protein abundance in BiFC experiments are shown 
in Supplementary Figure 13.

ChIP. ChIP was performed as previously described60, with minor modifica-
tions. Extraction buffers I (0.4 M sucrose, 10 mM Tris-HCl, pH 8.0, 10 mM 
MgCl2, 5 mM b-ME, 1 mM PMSF, 1× protease inhibitor (Roche)) and II (0.25 M  
sucrose, 10 mM Tris-HCl, pH 8.0, 10 mM MgCl2, 1% Triton X-100, 5 mM 
b-ME, 1 mM PMSF, 1× protease inhibitor (Roche)) were used for protein 
extraction. The following antibodies that had previously been used for ChIP 
in Arabidopsis were used: anti-GFP (A6455, Thermo Fisher)61 for pMSI1:GFP-
MSI1 msi1-1 ChIP, anti-HA (12CA5, Roche)61 for pFIE:FIE-HA fie-11 ChIP, 
anti- H3K27me3 (07-449, Millipore)33,62, anti-H3 (07-690, Millipore)62, anti-
FLAG (F3165, Sigma)63 for pEMF2:EMF2-3XFLAG emf2 ChIP, and anti-Myc 
(C3956, Sigma)64 for gAZF1-Myc and gBPC1-Myc ChIP. Anti-FIE34 antiserum 
was first used for ChIP here and showed much reduced occupancy in prc2 
mutants (Fig. 5c). The anti-BPC1 antiserum was generated in rabbits, using full-
length recombinant BPC1 protein, and gave ChIP signal specifically in the wild 
type (Supplementary Fig. 11). Throughout, H3K27me3 was normalized over 
H3 to control for nucleosome density; all other ChIP reaction data are shown as 
% input. For most ChIP experiments, representative transgenic lines were used; 
alternatively, pools of 40 independent T1 progeny (or more) were used.

ChIP-seq in germinating embryos. For H3K27me3, FIE, AZF1 and BPC1 
ChIP-seq, ChIP was performed on germinating embryos (30 h after imbibi-
tion) as described above, but eluted into a smaller volume (15 l in total), using 
the Qiagen MinElute PCR purification kit (Cat. No. 28004). Three independ-
ent ChIP and input reactions were sequenced. ChIP-DNA and input (after 
dilution to about 0.1–1 ng) were amplified with the SeqPlex DNA amplifica-
tion kit (Sigma, SEQXE-10RXN) according to the manufacturer’s instructions 

with the following modifications: a first linear PCR was followed by a second 
round of amplification (less than ten cycles). After primer removal, qPCR was 
performed to test amplification of different genomic regions. We converted 
linearly amplified DNA from input chromatin and pulldowns to libraries for 
sequencing by performing end-repair followed by A-tailing and ligation of 
universal adaptors (all enzymes by Enzymatics, MA). Libraries were ampli-
fied to 50–100 nM with custom dual-indexing primers and sequenced with an 
Illumina NextSeq500 at a depth of >15 million reads per sample for pulldowns 
and >30 million reads per sample for inputs. We mapped reads to the TAIR10 
genome release v31 using bowtie2 (ref. 65). Alignment files were converted 
to 1-bp resolution bigwig files and normalized by 10 million reads sequenced 
(RP10M) with custom scripts. All ChIP-seq replicates were highly similar to 
each other (see below). Bigwigs from the ChIP-seq replicates were averaged 
with WiggleTools66. Significant peaks were identified with MACS2 version 
2.1.1.20160309 with relevant input controls (C24 for FIE, Col for AZF1 and 
BPC1, total H3 pulldown for H3K27me3). Default MACS2 settings were used 
for FIE, AZF1, and BPC1, and the ‘−broad’ option was used for H3K27me3. 
Only peaks with Q < 10−10 were considered.

Significant peaks were mapped to genes as previously described23 with the 
HOMER67 script annotatePeaks. Gene Ontology (GO) enrichment analysis 
was carried out with AgriGO68 combined with manual curation to remove 
redundant terms.

For FIE ChIP-seq in wild-type and double TF-subfamily (class I BPC and 
C1-2iD ZnF) knockdown lines, anti-FIE34 antiserum was used. ChIP DNA 
and input libraries (three replicates each) were generated with the ThruPLEX 
DNA-seq kit (RUBICON GENOMICS, R400406). Libraries were sequenced at 
a depth of >15 million reads per sample for pulldowns and >30 million reads 
per sample for inputs. Replicate comparison and significant peak identification 
were carried out as described above with the default MACS2 settings. Only 
peaks with Q < 10−10 were considered.

To assess the change in FIE binding in BPC+ZnFKD mutants relative to the 
wild type (WT), we extracted normalized reads mapping to WT FIE peaks (Fig. 
5f) from WT and BPC+ZnFKD FIE ChIP data sets using bedtools and plotted 
log2(RPM) in a scatterplot. Reads increased or decreased in BPC+ZnFKD were 
indicated (P < 0.01 and twofold change). For the region metaplot, detected FIE 
peaks were quantified from the normalized and input-subtracted number of 
reads in each 10-bp window (FIE peak signal) in WT and BPC+ZnFKD. The 
average FIE peak signals in the window of 1,000 bp around peak centers were 
plotted with the ‘loess’ smoothing function in R with a span of 0.2.

We assessed ChIP replicate concordance by computing pairwise Pearson 
correlation coefficients (PCCs) of the RP10M normalized read counts in each 
10-kb window for all ChIP-seq data sets, using the ‘cor’ function with method 
‘pearson’ in R. PCC was >0.95 for all ChIP-seq replicates. Principal component 
analysis was performed on the pairwise PCC matrix with the ‘prcomp’ function 
in R, and the results were converted to a scatterplot. Significant regions for all 
ChIP-seq experiments performed in 30-h-old plants (germinating embryos) 
are listed in Supplementary Table 4.

EMSA. A 60-bp fragment of the AG_2 PRE-containing two GA repeats 
or one telobox, as well as versions thereof with motif substitutions, were 
labeled with Cy5-dCTP (GE Healthcare Life Sciences) by end-repair with 
Klenow fragment (3  5  exo-) (NEB). For EMSA and other oligonucleotide 
sequences, see Supplementary Table 5. Briefly, complementary single-strand 
DNA probes were synthesized (IDT) that, when annealed, gave rise to a two-
nucleotide 3  overhang (with the last annealed nucleotide being a G). After 
Cy5 labeling, the probe was purified with Illustra MicroSpin G-25 columns 
(GE Healthcare Life Sciences).

Full-length BPC1, AZF1 cDNAs were cloned into pET32a and transformed 
into Escherichia coli (BL21). Protein was isolated as previously described69. 
For binding assays, a 20- l reaction containing 2 l of the protein extract, 3 l  
of 1 pg/ l probe and 2 l of 10× binding buffer (0.1 M Tris-HCl, pH 7.5, 
0.5 M NaCl, 10 mM DTT, 10 mM EDTA, 50% glycerol, 0.5 mg/ml poly(dI-
dC), 1 mg/ml BSA) was used. For the AZF1 ZnF TF, the binding reaction 
was supplemented with 1 mM CaCl2 and 0.1 mM ZnCl2. Free and bound 
probes were separated on a 6% PAGE gel in 0.5× TBE at 100 V for 60 min. 
The gel was scanned by a Typhoon scanner (Typhoon 9410 variable mode 
imager, Amersham) at BP 670 with a gain of 600. Shifted and unshifted probes 
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were quantified with ImageJ. Full-length EMSA gel images are provided in 
Supplementary Figure 13.

Tethering assay. BPC1 and AZF1 coding sequences were cloned into LexA_
DBD and Gal4_DBD vectors, respectively, as effectors70. The reporter con-
tained two repeats each of the LexA and Gal4 binding sites with a 35S minimal 
promoter driving -glucuronidase (GUS)70. 35S:LUC (firefly luciferase) was 
included to monitor transfection efficiency. Empty Gal4_DBD or Gal4_DBD_
VP16 and LexA_DBD_VP16 served as controls. 16 h after transfection, 1 × 
106 protoplasts were used for ChIP (anti-FIE antiserum)34.

Y1H screen. Functionally defined PREs (AG, SEP3, At5g) were cloned as 
300-bp DNA fragments into a modified pLacZi vector (Clontech) carrying 
gLUC instead of LacZ as a reporter gene and integrated into the genome of 
yeast strain YM4271. A robotic Y1H screen was carried out against 1,956 
Arabidopsis TFs as previously described but with luciferase activity used as a 
readout19. The identified PRE-interacting TFs were further filtered on binding 
to multiple PRE fragments and binding strength.

For identification of telobox-motif-binding TFs, a telobox motif was inserted 
into a 30-bp region from a negative control fragment (NC_3; At3g18780 
Actin2; Chr 3: 6,476,550–6,476,579). Three copies of the 30-bp NC_3 region 
with the telobox motif were inserted into bait vector pAbAi (Clontech), and 
the vector was then into the genome of yeast strain Y1HGold (Clontech). Y1H 
screening against a TF library with about 1,400 TFs71 was carried out according 
to the Matchmaker Gold Yeast One-Hybrid Library Screening System manual 
(Clontech), with aureobasidin A resistance used to select for binding.

Phylogenetic analyses. For phylogenetic trees, we carried out amino acid 
sequence alignment and generation of a neighbor-joining (NJ) phylogenetic 
tree using MEGA72 with default settings. Phylogenetic shadowing was per-
formed essentially as previously described61, except that conserved regions 
were aligned using Clustal Omega (EMBL-EBI).

Statistical analysis. Statistical tests performed, sample size and P values are 
indicated in each figure legend. The investigator was not blinded to the group 
allocations during the experiment, and variation was not estimated within 
each group of data. Dependent variables were continuous, and all data points 
analyzed were independent. Throughout, the Kolmogorov–Smirnov73 test 
was used to assess whether the data were normally distributed. For normally 
distributed data, an unpaired one-tailed t-test was used. In all other cases, non-
parametric tests were used for two-group comparisons (Mann–Whitney U-
test74) and for multiple-group comparisons (Kruskal–Wallis test75 combined 
with the Dunn’s post hoc test76). Variances in some of the groups compared 
differ for biological reasons. Rejecting the null hypothesis on the basis of these 
tests for this type of data implies that one group stochastically dominates a 
second group—that is, if a value X is randomly chosen from one group and 
a value Y is randomly chosen from another, then the probability of X > Y is 
greater than the probability of Y > X. The sample size was chosen on the basis 
of prior studies that showed significant effects with similar samples sizes (for 
an example, see ref. 57). P values for all tests performed, as well as additional 
statistical parameters, are listed in Supplementary Table 6.

Data availability. ChIP-chip (CLF) and ChIP-seq (all others) data were depos-
ited in the NCBI’s Gene Expression Omnibus (GEO) under series numbers 
GSE7065 (CLF), GSE7063 (input), GSE84483 (FIE, H3K27me3, AZF1 and 
BPC1) and GSE95562 (FIE in the wild type and in BPC+ZnFKD).

Code availability. Motif-prediction programs are available from their individual 
websites: Meme v4.9.1, Weeder v1.4.2, AlignAce v4.0, MotifSampler v3.2 and 
Bioprospector v2004. For motif enrichment and downstream analysis we used 
the ‘Cistome’77 pipeline, which is freely available as a web-based application.
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