## **Supporting Information**

## Chen et al. 10.1073/pnas.1701687114



Fig. S1. Amino acid sequence alignments of known AcsF proteins. Sequences are those from *Rvi. gelatinosus* (AcsF), *Synechocystis* (Cycl), *C. reinhardtii* (CRD1), *A. thaliana* (CHL27), and *Rba. sphaeroides* (Rsp\_0294; abbreviated as 0294). Conserved, highly similar, and similar residues are highlighted in black, dark gray, and light gray, respectively. The putative diiron center ligands are marked by red diamonds.



**Fig. S2.** Genetic knockouts and replacements in *Rvi. gelatinosus.* (*A*) Depiction of the deletion of *bchE* (*Left*), confirmed by colony PCR (*Right*). (*B*) Depiction of deletion of *acsF*, and subsequent integration of foreign genes at the *acsF* locus, under control of the native promoter (*Upper*), confirmed by colony PCR (*Lower*). The regions subjected to genetic manipulation are depicted in proportion to the scale bar. ORFs are represented as colored filled rectangles, within which the arrow indicates the direction of transcription. Crt, carotenoid biosynthesis; RC&LHC, reaction center and light-harvesting complexes.



Fig. S3. Deletion of rsp\_6110 in Rba. sphaeroides. Diagram depicting deletion of rsp\_6110 (Left), and confirmation by colony PCR (Right).



**Fig. S4.** Construction and phenotypic analysis of *Rvi. gelatinosus* mutant expressing *bciE* and *acsF* from *Rba. sphaeroides*. (A) Diagram depicting integration of *bciE* and *acsF* from *Rba. sphaeroides* in place of the native *acsF* in *Rvi. gelatinosus* (*Upper*), and confirmation by colony PCR (*Lower*). (B) HPLC analysis of pigments extracted from *Rvi. gelatinosus* strains, extracted from the same number of cells of each strain except for the  $\Delta bchE$  strain, which had a much greater BChl *a* content compared with the other strains. (*Inset*) Retention times and Soret/Q<sub>y</sub> maxima of peaks were used to identify BChl *a*.klj.



**Fig. S5.** Current status of known components of the oxygen-dependent cyclase.  $AcsF^{\alpha}$ ,  $AcsF^{Anox}$ , and  $AcsF^{Ox}$  represent AcsF proteins from Alphaproteobacteria, anoxygenic phototrophs, respectively.  $e^-$  denotes the electron donor to the diiron center of AcsF.

Table S1. Distribution of *acsF* and *bchE* genes among sequenced phototrophic Proteobacteria, along with the presence of orthologs of rsp\_6110

|                                        |                   |                   | Presence | :e/abse | nce of:  |
|----------------------------------------|-------------------|-------------------|----------|---------|----------|
| Organism                               | GenBank no.       | Group             | 6110     | acsF    | bchE     |
| Acidiphilium multivorum AIU301         | AP012035          | α1 <i>,</i> ΑΑΡ   | •        | •       | 0        |
| Phaeospirillum molischianum DSM 120    | ZP_09875400       | α1, PNB           | Х        | х       | 0        |
| Rhodospirillum centenum SW             | CP000613          | α1, PNB           | •        | •       | 0        |
| Rhodospirillum rubrum ATCC 11170       | CP000230          | α1, PNB           | Х        | х       | 0        |
| Rhodospirillum photometricum DSM 122   | YP_005416037      | α1, PNB           | х        | х       | 0        |
| Ahrensia sp. strain R2A130             | NZ_AEEB01000017   | α2 <i>,</i> ΑΑΡ   | •        | •       | х        |
| Agrobacterium albertimagni AOL15       | ALJF0000000       | α2, ΑΑΡ           | •        | •       | 0        |
| Hoeflea phototrophica DFL43            | NZ_ABIA02000022   | α2 <i>,</i> ΑΑΡ   | •        | •       | х        |
| Labrenzia alexandrii DFL11             | NZ_EQ973123.1     | α2 <i>,</i> ΑΑΡ   | •        | •       | 0        |
| Methylobacterium sp. strain 4-46       | CP000943          | α2 <i>,</i> ΑΑΡ   | •        | •       | 0        |
| Methylobacterium radiotolerans         | CP001001          | α2 <i>,</i> ΑΑΡ   | •        | •       | х        |
| Methylobacterium populi BJ001          | YP_001927978      | α2 <i>,</i> ΑΑΡ   | •        | •       | х        |
| Methylobacterium extorquens AM1        | YP_002966142      | <b>α2, AAP</b>    | •        | •       | х        |
| Methylocella silvestris BL2            | CP001280          | α2, AAP           | •        | •       | х        |
| Bradyrhizobium sp. strain BTAi1        | CP000494          | α2, PNB           | •        | •       | ٠        |
| Bradyrhizobium sp. strain ORS278       | CU234118          | α2, PNB           | •        | •       | •        |
| Rhodomicrobium vannielii ATCC 17100    | NC 014664         | α2, PNB           | x        | x       | 0        |
| Rhodopseudomonas palustris             | Multiple          | α2, PNB           | •        | •       | 0        |
| Dinoroseobacter shibae DFL12           | CP000830          | <b>α3. AAP</b>    | •        | •       | 0        |
| Jannaschia sp. strain CCS1             | CP000264          | α3. ΑΑΡ           | •        | •       | X        |
| Loktanella vestfoldensis SKA53         | AAMS0100000       | α3. ΔΔΡ           |          |         | x        |
| Rosenbacter denitrificans Och 114      | CP000362          | α3 ΔΔΡ            |          |         | 0        |
| Roseobacter litoralis Och 149          | ARIG000000        |                   |          |         | 0        |
| Rosephacter sn strain AzwK-3h          |                   |                   |          |         | •        |
| Rosephacter sp. strain A2WK-30         |                   |                   |          |         | x        |
| Rosenvarius sn strain TM1025           |                   | α3, ΑΑΓ<br>α2 ΔΔD |          |         | <u>^</u> |
| Roseovarius sp. strain 1101035         |                   | α3, ΑΑΓ<br>α3 ΔΔΡ |          |         | 0        |
| Rhodohacter canculatus SR 1002         |                   | as DND            | Y        | v l     | •        |
| Rhodobacter sphaeroides                | Multinle          | as phip           |          |         | -        |
| Rhodobacter spinerolaes                | 7P 05842911       | as PNR            |          |         | •        |
|                                        |                   |                   |          |         | -<br>V   |
| <i>Erythrobacter</i> sp. strain NAP1   | AAIVIWUUUUUUU0000 | α4, AAP           | •        | •       | X        |
| Citromicrobium bathyomarinum JL354     | ZP_06861151       | α4, AAP           | •        | •       | 0        |
| Sphingomonas spp.                      | Multiple          | α4, ΑΑΡ           | •        | •       | X        |
| Brevundimonas subvibrioides ATCC 15264 | CP002102          | α4, ΑΑΡ           | •        | •       | X        |
| Rubrivivax gelatinosus IL-114          | NC_017075         | β <i>,</i> PNB    | Х        | ٠       | 0        |
| Rubrivivax benzoatilyticus JA2         | NZ_AEWG01000000   | β <i>,</i> PNB    | Х        | •       | 0        |
| Methyloversatilis universalis FAM5     | ZP_08506871       | β <i>,</i> PNB    | Х        | ٠       | Х        |
| Limnohabitans sp. strain Rim28         | ALKN0000000       | β <i>,</i> PNB    | Х        | •       | Х        |
| Limnohabitans sp. strain Rim47         | ALKO0000000       | β <i>,</i> PNB    | Х        | ٠       | x        |
| Allochromatium vinosum DSM 180         | NC_013851         | γ, PSB            | х        | х       | 0        |
| Ectothiorhodospira sp. strain PHS-1    | NZ_AGBG01000002   | γ, PSB            | Х        | х       | 0        |
| Halorhodospira halophila SL1           | CP000544          | γ, PSB            | Х        | х       | •        |
| Marichromatium purpuratum 984          | NZ_AFWU01000001   | γ, PSB            | х        | х       | 0        |
| Thiocapsa marina 5811                  | NZ_AFWV01000003   | γ, PSB            | Х        | х       | •0       |
| Thiocystis violascens DSM198           | AGFC00000000      | γ <i>,</i> PSB    | х        | х       | 0        |
| Thioflavicoccus mobilis 8321           | NC_019940         | γ <i>,</i> PSB    | х        | х       | 0        |
| Thiorhodococcus drewsii AZ1            | NZ_AFWT01000007   | γ, PSB            | х        | х       | 0        |
| Thiorhodospira sibirica ATCC 700588    | <br>AGFD01000016  | γ, PSB            | х        | х       | 0        |
| Congregibacter litoralis KT71          | AAOA01000014      | γ, AAP            | х        | •       | •        |
| gamma proteobacterium NOR5-3           | ZP 05125815       | v, AAP            | X        | •       | •        |
| Luminiphilus syltensis NOR51-B         | NZ DS999411       | v. AAP            | X        | •       | х        |
| marine aamma proteobacterium HTCC2080  | ) NZ DS999405     | v. AAP            | x        | •       | X        |
| gamma proteobacterium HIMB55           | ZP 09691978       | v, AAP            | X        | •       | X        |

Modified from (26).  $\bullet$ , gene present in PGC;  $\bigcirc$ , gene present outside PGC; X, gene absent. The red box indicates an identical pattern of presence/absence of orthologs of rsp\_6110 and *acsF* among Alphaproteobacteria. AAP, aerobic anoxygenic phototroph; PNB, purple nonsulfur bacterium; PSB, purple sulfur bacterium.

PNAS PNAS

## Table S2. Strains and plasmids described in this study

PNAS PNAS

| Strain/plasmid                           | Genotype/characteristics                                                                                            | Source                    |
|------------------------------------------|---------------------------------------------------------------------------------------------------------------------|---------------------------|
| E. coli                                  |                                                                                                                     |                           |
| JM109                                    | Cloning strain for plasmid constructs                                                                               | Promega                   |
| S17-1                                    | Conjugation strain for pK18mobsacB constructs                                                                       | (48)                      |
| Rvi. gelatinosus                         |                                                                                                                     |                           |
| WT                                       | IL144                                                                                                               | S. Nagashima <sup>3</sup> |
| ∆bchE                                    | Unmarked deletion mutant of <i>bchE</i> in WT                                                                       | This study                |
| $\Delta bchE\Delta acsF$                 | Unmarked deletion mutant of <i>acsF</i> in $\Delta bchE$                                                            | This study                |
| $\Delta bchE\Delta acsF::acsF^{Rs}$      | acs $F^{Rs}$ replacement of acsF in $\Delta bchE$                                                                   | This study                |
| $\Delta bchE\Delta acsF::bciE-acsF^{Rs}$ | acsF replaced with rsp 6110-acsF <sup>Rs</sup> in $\Delta bchE$                                                     | This study                |
| $\Delta bchE\Delta acsF::cycl$           | cvcl replacement of acsF in $\Delta bchE$                                                                           | This study                |
| $\Delta bchE\Delta acsF::cvcl-vcf54$     | $cvcl-vcf54$ replacement of acsF in $\Delta bchE$                                                                   | This study                |
| Synechocystis                            |                                                                                                                     | , <b>,</b>                |
| ŴT                                       | sp. PCC6803                                                                                                         | R. Sobotka <sup>†</sup>   |
| acsF <sup>Rg+</sup>                      | acs $F^{Rg}$ and $Km^{R}$ replacement of psbAll in WT                                                               | This study                |
| $acsF^{Rg+}\Delta cvcl$                  | $Cm^{R}$ replacement of cvcl in acs $F^{R_{g+}}$                                                                    | This study                |
| $acsF^{Rg+} \Delta cvcl \Delta vcf54$    | Zeo <sup>R</sup> replacement of central portion of vcf54 in acs $F^{Rg+}\Delta cvcl$                                | This study                |
| ∆vcf54                                   | Zeo <sup>R</sup> replacement of central portion of vcf54 in WT                                                      | (22)                      |
| Rba. sphaeroides                         | ······································                                                                              |                           |
| wt                                       | 2.4.1                                                                                                               | S. Kaplan <sup>‡</sup>    |
| $\Delta bchE\Delta ccoP$                 | Unmarked deletion mutant of <i>bchE</i> and <i>ccoP</i> in WT                                                       | (15)                      |
| $\Delta bchE\Delta ccoP\Delta acsF$      | Unmarked deletion mutant of <i>acsF</i> in $\Delta bchE\Delta ccoP$                                                 | (15)                      |
| $\Delta bchE\Delta ccoP\Delta 6110$      | Unmarked deletion mutant of rsp 6110 in $\Delta bchE\Delta ccoP$                                                    | This study                |
| Plasmids                                 |                                                                                                                     | ,                         |
| pK18mobsacB                              | Allelic exchange vector, <i>Km<sup>R</sup></i>                                                                      | J. Armitage <sup>§</sup>  |
| pK18∆ <i>bchE<sup>Rg</sup></i>           | Upstream-Ndel-downstream of bchE <sup>Rg</sup> cloned into BamHI/HindIII sites of pK18mobsacB                       | This study                |
| pK18∆ <i>acsF<sup>Rg</sup></i>           | Upstream-Ndel-downstream of acsF <sup>Rg</sup> cloned into BamHI/HindIII sites of pK18mobsacB                       | This study                |
| pK18∆6110                                | Upstream-downstream of rsp_6110 cloned into Xbal/HindIII sites of pK18mobsacB                                       | This study                |
| pK18[ <i>acsF<sup>Rs</sup></i> ]         | acs $F^{Rs}$ cloned into the Ndel site of pK18 $\Delta$ acs $F^{Rg}$                                                | This study                |
| pK18[6110-acsF <sup>Rs</sup> ]           | rsp_6110- <i>acsF<sup>Rs</sup></i> cloned into the <i>Ndel</i> site of pK18∆ <i>acsF<sup>Rg</sup></i>               | This study                |
| pK18[ <i>cycl</i> ]                      | cycl cloned into the Ndel site of pK18 $\Delta acsF^{Rg}$                                                           | This study                |
| pK18[cycl-ycf54]                         | <i>cycI-ycf54</i> cloned into the <i>NdeI</i> site of pK18∆ <i>acsF<sup>Rg</sup></i>                                | This study                |
| pPD-FLAG                                 | Cloning site, Km <sup>R</sup> , flanked by psbAll upstream and downstream regions, Amp <sup>R</sup>                 | (21)                      |
| pPD[ <i>acsF<sup>Rg</sup></i> ]          | acsF <sup>Rg</sup> cloned into Ndel/Bg/II sites of pPD-FLAG                                                         | This study                |
| pBBRBB-Ppuf <sub>843-1200</sub>          | Expression vector carrying the 843–1,200 region of <i>puf</i> promoter of <i>Rba. sphaeroides</i> , Km <sup>R</sup> | (27)                      |
| pBB[6110]                                | rsp_6110 cloned into the BglII/NotI sites of pBBRBB-Ppuf <sub>843-1200</sub>                                        | This study                |

\*Research Institute for Photosynthetic Hydrogen Production, Kanagawa University, Yokohama, Japan. <sup>†</sup>Institute of Microbiology, Department of Phototrophic Microorganisms, Třeboň, Czech Republic. <sup>‡</sup>Department of Microbiology and Molecular Genetics, University of Texas Medical School, Austin, TX. <sup>§</sup>Department of Biochemistry, University of Oxford, Oxford, United Kingdom.

Chen et al. www.pnas.org/cgi/content/short/1701687114

## Table S3. Primers used in this study

PNAS PNAS

| Primer       | Sequence (5′-3′)                                             |  |  |
|--------------|--------------------------------------------------------------|--|--|
| 6110UpF      | GCTCTAGAGGAGCTGATCCCGCCCTTCC                                 |  |  |
| 6110UpR      | GGAGAGCCCTCCGGCCGGCGCGTTCATGGGGGGTTCCCTTCTCTTGG              |  |  |
| 6110DownF    | CCAAGAGAAGGGAACCCCCATGAACGCGCCGGCCGGAGGGCTCTCC               |  |  |
| 6110DownR    | GCAAGCTTCCCAGGTTCACCGCCACGCC                                 |  |  |
| 6110CheckF   | GCCCCGGAGCGACAAGGAC                                          |  |  |
| 6110CheckR   | GTATTTCTTGGCCTTGGTCAGG                                       |  |  |
| 6110F_Ndel   | GAGTCTCATATGGGTCTGTTCACGAAACAAGCG                            |  |  |
| 6110F_Bglll  | GGCAGATCTATGGGTCTGTTCACGAAACAAGCGGAA                         |  |  |
| 6110R_Notl   | TCTGCGGCCGCTCACAGCGTCACCTGCTCGGAGAA                          |  |  |
| 0294F_Ndel   | CCAGTACATATGTGAACGCGCCGGCCGGAGG                              |  |  |
| 0294R_Ndel   | CCAGTACATATGTCAATAGCTCGGCTCCAGTCGG                           |  |  |
| 45840UpF     | CTAGGTCAAGTAGGATCCTCATGCCGGCGGCGATCATG                       |  |  |
| 45840UpR     | CTAGGTCAAGTACATATGGGAAACGGCTCCTCGCGATTC                      |  |  |
| 45840DownF   | CTAGGTCAAGTACATATGCGACGGCTGGGTCACGATGC                       |  |  |
| 45840DownR   | CTAGGTCAAGTAAAGCTTTGCCGGTGTAGAAGTCGCACGC                     |  |  |
| 45840CheckF  | TAGCCGCCGACCATGCCGA                                          |  |  |
| 45840CheckR  | GCGGTGCACCAGCACCGTGA                                         |  |  |
| 33550UpF     | GAGTCTGGATCCCTGCATGAGCGACAACGCGTC                            |  |  |
| 33550UpR     | GAGTCTCATATGGAGGGTCTCCGTGGTGTGTCA                            |  |  |
| 33550DownF   | GAGTCTCATATGAAGCGAGGACAGGATGCTGAGC                           |  |  |
| 33550DownR   | GAGTCTAAGCTTGGAACTCCTCGCTCAGGTTGCG                           |  |  |
| 33550CheckF  | GAACGTTTGCCGGACACGGT                                         |  |  |
| 33550CheckR  | ACGAGGTACTTCAGGTGCTCC                                        |  |  |
| 33550F_Ndel  | GAGTCTCATATGCTCGCGACCCCGACGATCG                              |  |  |
| 33550R_BamHI | GAGTCTGGATCCTCACCATGCCGGGGGCCATG                             |  |  |
| 1214UpF      | GCCGATCCGGTTAACCTAGGCA                                       |  |  |
| 1214UpR      | ATATCCAGTGATTTTTTTTCTCCATAGAGTTGTTTAAAATAGTTTCC              |  |  |
| 1214UpCmF    | GGAAACTATTTTAAACAACTCTATGGAGAAAAAAATCACTGGATAT               |  |  |
| 1214DownCmR  | GGTGATCCAGCGGAAGACAACCTTACGCCCCGCCCTGC                       |  |  |
| 1214DownF    | GCAGGGCGGGGCGTAAGGTTGTCTTCCGCTGGATCACC                       |  |  |
| 1214DownR    | TGGAGTTGTTGGGAGAGTTCGGTC                                     |  |  |
| 1214F_Ndel   | GGAATTCCATATGGTTAATACCCTCGAAAAGCCCG                          |  |  |
| 1214R_Ndel   | GGAATTCCATATGTTAGCGCACAGCTCCAGCCA                            |  |  |
| 1214RBS1780F | GTTGGCTGGAGCTGTGCGCTAATATAGGAGCTTGGATTGTGGAAAGTTGGGCATTGACGA |  |  |
| 1214RBS1780R | TCGTCAATGCCCAACTTTCCACAATCCAAGCTCCTATATTAGCGCACAGCTCCAGCCAAC |  |  |
| 1780F        | GTGGAAAGTTGGGCATTGACG                                        |  |  |
| 1780R        | CTAATCCAGGGATGCAAGGGG                                        |  |  |
| 1780R_Ndel   | GAGTCTCATATGCTAATCCAGGGATGCAAGGGG                            |  |  |