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ARTICLE INFO ABSTRACT

Keywords: CRISPy-web is an interactive web-based platform designed for rational guide RNA design in CRISPR-Cas9-based
CRISPRi genome editing systems. Here, we present CRISPy-web 3.0 (https://crispy.secondarymetabolites.org/), an
T“PB upgraded and versatile version that extends its functionality beyond classical Cas9-based systems. This version
g:;i;?\iﬁiting integrates support for diverse genome editing systems, including Cas9, CRISPR interference (CRISPRi), and
Webserver TnpB/wRNA. The redesigned interface enables users to toggle between multiple editing modes, select target

regions such as ORFs or 5' UTRs, and visualize strand orientation, off-targets, and predicted mutation outcomes.
It also incorporates scoring systems that evaluate guide RNA efficiency and specificity based on mismatch
tolerance, positional context, and PAM requirements for CRISPR-Cas9-based applications. With an improved user
interface design, enhanced backend scalability, and modular support for customizable inputs, CRISPy-web 3.0
provides a comprehensive and extensible platform for guide RNA design, enabling genome editing across a

broader range of prokaryotic systems, including both CRISPR and TnpB.

1. Introduction

CRISPR technologies have revolutionized genome engineering in
both model and non-model organisms by enabling programmable,
sequence-specific manipulation of DNA and RNA. The foundational
CRISPy tool was originally introduced as a Python-based utility to
identify sgRNA targets in Chinese hamster ovary (CHO) cells, with built-
in off-target prediction tailored to the CHO-K1 genome [1]. Recognizing
the need for broader accessibility and flexibility, CRISPy-web 1.0 was
subsequently launched as an online service, enabling researchers to
perform sgRNA searches on user-provided microbial genomes in Gen-
Bank format [2]. It featured interactive selection interfaces, genome
visualization, and compatibility with outputs from antiSMASH [3],
addressing a major gap for the natural product research communities.
Building on this, CRISPy-web 2.0 [4] introduced support for
CRISPR-BEST (Base Editing SysTem) [5], which enabled

single-nucleotide resolution editing using engineered cytidine and
adenosine deaminases in Streptomyces species.

The past few years have witnessed an expansion in genome editing,
including prime editing [6], INTEGRATE [7], Cas12n [8], STITCHR [9],
TIGR-Tas [10], CASCADE-Cas3 [11], and novel compact nucleases such
as TnpB [16] and Fanzor [12]. Among these, TnpB-based systems, small
RNA-guided endonucleases derived from 1S200/IS605-family trans-
posons, have emerged as evolutionarily ancient precursors to class 2
CRISPR-Cas12 [13-15]. Functioning with a distinct ®RNA rather than
canonical sgRNA, TnpB effectors offer programmable DNA targeting
with minimal protein size, facilitating delivery in challenging in vivo
contexts and expanding the programmable editing toolbox for synthetic
biology. Parallel to this, transcriptional interference (CRISPRi) [16] has
also gained traction as a non-destructive method for conditional gene
repression, widely adopted in functional genomics and metabolic
rewiring studies [17,18].
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Table 1

Feature comparison of CRISPy-web 3.0 and selected CRISPR guide design tools.
Tool Cas9 CRISPRi BE TnpB Advanced Parameters Off-target User Genome Non-model organisms Last Update Reference
CRISPy-web 1.0 v X X X Basic Yes Yes Yes 2016 [2]
CRISPy-web 2.0 v X v X Basic Yes Yes Yes 2020 [4]
CRISPy-web 3.0 v v v v Advanced Yes Yes Yes 2025 This work
CHOPCHOP v v v X Moderate Yes Yes Yes 2023 [25]
BE-Designer v X v X Moderate Yes Limited Limited 2021 [26]
GuideScan v v v X Advanced Yes Yes Yes 2022 [27]
CRISPOR v x v X Moderate Yes Yes Yes 2022 [28]

\/ = supported, x= not supported. “Advanced Parameters” includes expert mode for PAM/TAM, spacer length, editing window, etc. “BE” means base editing.

The CRISPR-Cas9 system, still the most widely applied genome
editing tool, faces challenges with off-target effects and variable editing
efficiency. To address this, recent research has introduced empirical and
machine learning-based scoring models to evaluate guide RNA quality,
including CFD and DeepCRISPR scores [19,20]. These models assess
factors such as mismatch position, thermodynamic stability, nucleotide
composition, and chromatin accessibility. However, many online tools
only provide basic rule-based filtering or are not compatible with
non-model genomes. CRISPy-web 3.0 incorporates a flexible scoring
logic [21] tailored to prokaryotic systems, highlighting guide RNAs
based on mismatch type and location (especially within the 8-20 bp
window upstream of PAM), and integrating region-specific heuristics to
optimize guide selection for Cas9 and CRISPRi applications.

Despite the increasing adoption of these modalities, most sgRNA
design tools remain restricted to Cas9-based editing or lack support for
custom genomes and emerging effector systems. To bridge this gap, we
developed CRISPy-web 3.0, a unified, modular platform supporting
guide RNA design for Cas9, CRISPRi, and oRNA-based TnpB system
STAGE [22], complete with scoring logic, mismatch-aware specificity
filters, and compatibility with user-provided microbial genomes. This
comprehensive feature set positions CRISPy-web 3.0 as one of the most
flexible and forward-compatible solutions for microbial genome editing
(Table 1).

2. Design and implementation
2.1. Support for CRISPRI design

CRISPy-web 3.0 supports sgRNA design for CRISPR interference by
identifying target sites in promoter regions, 5' untranslated regions (5’
UTRs), and early coding sequences. In prokaryotic systems, the choice of
DNA strand targeted by dCas9 or dCpfl is a critical determinant of
CRISPRi efficiency: targeting the non-template (coding) strand is
generally required for effective transcriptional repression, as dCas9
binding to the template strand typically does not block elongating RNA
polymerase in bacteria [17,18]. CRISPy-web 3.0 explicitly incorporates
this principle by allowing users to select either the template or
non-template DNA strands and visually indicates strand orientation on
the gene map and results table. The platform automatically prioritizes
and annotates guides on the non-template strand for bacterial CRISPRi
applications but also provides full flexibility for experimental designs
involving eukaryotes or non-canonical systems. Each sgRNA is scored
based on positional effectiveness [21] and categorized into “with-
in-ORF” or “upstream-of-ORF” (including promoter and 5' UTR) groups.
Additionally, the interface highlights the distance of each guide to the
translation start codon, allowing users to prioritize sgRNAs expected to
mediate stronger transcriptional repression. This integrated consider-
ation of strand orientation, prokaryotic transcript structure, and func-
tional annotation allows CRISPy-web 3.0 to deliver more precise,
biologically informed, and strand-aware CRISPRi designs for prokary-
otic genomes.
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2.2. Integration of TnpB and wRNA design

The platform now supports the design of ®RNAs compatible with
TnpB, TnpBi, and TnpB-BEST, expanding CRISPy-web beyond tradi-
tional CRISPR-Cas systems. For each genomic locus, the tool first iden-
tifies the appropriate target-adjacent motifs (TAMs) required for TnpB-
mediated DNA recognition. The surrounding regions are then scanned
for candidate ®RNA target sites, prioritizing sequences with minimal off-
target potential (up to 2 mismatches) and favorable context for cleavage.
To simulate the TnpB-BEST strategy, which combines programmable
®RNA targeting with precise base editing via recruited deaminases, the
platform can annotate ®RNA designs that align with editable cytidines
or adenines within a defined editing window. The design logic in-
corporates both the sequence position relative to TAM and the distri-
bution of editable bases to maximize base editing success rates while
minimizing nonspecific cuts. This integrated workflow allows users to
explore next-generation programmable base editing in compact and
delivery-friendly formats.

2.3. Guide RNA scoring system

CRISPy-web 3.0 incorporates a modular scoring framework that
balances intrinsic guide RNA efficiency with mismatch-aware specificity
penalties. For Cas9-based applications, candidate guides are first eval-
uated for their sequence-intrinsic activity using position- and
dinucleotide-dependent features identified in prior empirical studies.
Off-target potential is then quantified by applying a mismatch-sensitive
penalty matrix, with stronger penalties assigned to mismatches within
the PAM-proximal seed region. The combined raw score is normalized
via a sigmoid transformation, yielding an intuitive range between 0 (low
confidence) and 1 (high confidence). For CRISPR interference
(CRISPRI), the system employs a position-weighted model that accounts
for strand orientation and proximity to the start codon, providing scores
reflective of transcriptional repression efficiency. At present, ®RNA-
based TnpB designs are reported without scoring due to limited
benchmarking data, but future updates will extend this framework as
experimental datasets become available.

2.4. Genome input and annotation support

CRISPy-web 3.0 accepts both FASTA and GenBank formats, with
preference for annotated sequences to enable gene name, locus tag, and
protein ID queries. For unannotated genomes, users are advised to use
annotation tools such as BAKTA [23], RAST [24], and optionally pre-
process the genome with antiSMASH [3] for BGC targeting.

2.5. Visualization and export

All candidate guide RNAs are visualized with interactive zoom and
filter functionalities. Guide RNAs can be sorted by off-target count,
position, or score, and downloaded in CSV format. Annotations indicate
whether a guide RNA can be used for conventional DSB-based genome
editing, base editing, or interference.
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Fig. 1. Workflow of CRISPy-web 3.0. Users can upload annotated genomes (GenBank files) or directly obtain sequences from antiSMASH job ID, choose between
Cas9 and TnpB modes, and identify target sites. The platform supports both DSB-based and DSB-free strategies, including interference (CRISPRi and TnpBi) and base
editing modes (A—G, C—T in CRISPR-BEST and TnpB-BEST). All selected or displayed spacers can be exported for downstream applications.
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Fig. 2. Visualization of candidate sgRNAs designed for CRISPRi targeting of the actinorhodin cluster in Streptomyces coelicolor. Each guide is displayed with
genomic location, strand orientation, associated gene, PAM, and a comprehensive off-target profile. The scoring system integrates both efficiency and specificity to

help users identify optimal sgRNA candidates.

3. Case studies: planning versatile genome editing of the
actinorhodin cluster in Streptomyces coelicolor

To comprehensively demonstrate the capabilities of CRISPy-web 3.0,
we conducted a multi-modal genome editing case study targeting the
actinorhodin biosynthetic gene cluster (region 11: 5,509,800-5,552,424
bp) in Streptomyces coelicolor (RefSeq: NC_003888.3).

3.1. CRISPRI, CRISPR-BEST, and CRISPR-Cas9 applications

Upon uploading the annotated GenBank file or get sequence from
antiSMASH [3], users are presented with an interactive visualization,
where different enzymes (editing systems) with customized parameters
and all regions are clearly displayed. A workflow is shown in Fig. 1.

Switching to CRISPRi mode, the platform identifies all possible
sgRNA targets within the selected cluster, with real-time visualization of
each guide’s position and strand orientation. In prokaryotic genomes,
effective CRISPRI relies on targeting the non-template (coding) strand;
this is clearly annotated in the results table and cluster map (Fig. 2).
Users can filter candidate guides by region (ORF, 5 UTR) and sort by
distance to translation start or scores, leveraging evidence that targeting
near the start codon maximizes transcriptional repression efficiency.
Each guide is annotated with positional effectiveness, functional region,
and predicted impact with off-targets and scores.

Switching to CRISPR-BEST mode, users can screen for sgRNAs
capable of introducing STOP codons or precise point mutations. The
results table includes mutation prediction at both DNA and amino acid
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level (e.g., W57%*, G15K), and a “STOP-only” filter streamlines selection
for gene knockout studies. Comprehensive off-target profiling (exact
match, 1 bp, 2 bp mismatch) and scoring are provided for each sgRNA.
All results shown in the page or customer-chosen spacers can be
downloaded for synthesis or cloning.

3.2. wRNA design for TnpB-related applications

In TnpB, TnpBi, or TnpB-BEST mode, users access the expert settings
panel to specify the TnpB subtype, TAM motif, spacer length, and edit-
able window parameters, reflecting the diversity of TnpB systems
recently uncovered in actinobacteria. The platform automatically scans
for all potential ®RNA targets adjacent to the defined TAM within the
actinorhodin cluster (Fig. 3). For each candidate ®RNA, the editing
window is visualized on the gene map and in the table, indicating which
bases fall within range of the base editor. Using similar logic, CRISPy-
web 3.0 provides predicted ®RNA for TnpBi applications; amino acid
changes, highlights newly introduced STOP codons, and performs
genome-wide off-target analysis (Fig. 3). This streamlined process en-
ables precise, compact, and programmable base editing in non-model
hosts.

3.3. Cross-mode comparison and workflow optimization
A distinctive feature of CRISPy-web 3.0 is the rapid toggling between

CRISPR-Cas9/CRISPRi and TnpB design modes for the same cluster or
gene region. Users can directly compare the density, distribution, and
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Fig. 3. Identification of ®RNA guides for TnpB and TnpB-BEST applications within the actinorhodin cluster. Results include all suitable target sites with
relevant sequence context, predicted editing windows, and off-target analysis, enabling precise design of compact base editing tools for microbial genomes.

predicted efficiency of sgRNA versus ®RNA targets within the cluster.
For synthetic biologists, this facilitates parallel design and experimental
planning, choosing the optimal nuclease system, region, and guide set
for targeted editing, activation, or repression. All tables, visualizations,
and off-target reports can be exported for documentation, synthesis, or
integration into downstream pipelines.

Through this workflow, users gain a comprehensive view of all
possible editing strategies: traditional knockout, CRISPRi repression, or
advanced TnpB-driven base editing, tailored to the structure and regu-
latory landscape of the actinorhodin cluster. The high degree of inter-
activity, region and strand awareness, mutational prediction, and expert
configuration demonstrated CRISPy-web 3.0’s unique value for micro-
bial genome engineering and natural product pathway optimization.

4. Discussion

CRISPy-web 3.0 represents a substantial advance in the landscape of
guide RNA design tools for microbial genome engineering and synthetic
biology. While numerous platforms exist for Cas9-based guide design,
such as CHOPCHOP [25], BE-Designer [26], GuideScan [27], and
CRISPOR [28], these are often limited in their flexibility, extensibility,
or compatibility with emerging editing modalities and non-model mi-
crobial genomes. In contrast to general-purpose off-target search en-
gines such as Cas-OFFinder, CRISPy-web 3.0 is not intended as a direct
replacement but rather as a complementary platform. It integrates target
discovery, multi-modal design (Cas9, CRISPRi, TnpB/wRNA), and
pathway-level visualization into a unified workflow specifically opti-
mized for non-model microbial genomes. Importantly, this unified
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design environment not only ensures flexibility for non-model organ-
isms and newly sequenced strains but also introduces support for
TnpB/wRNA systems, which remains uncommon among existing sgRNA
design platforms.

A key differentiator of CRISPy-web 3.0 is its modular, multi-modal
architecture. It uniquely integrates support for Cas9, CRISPRi, and the
recently discovered TnpB and TnpB-related systems like TnpB-BEST and
TnpBi, alongside base editing, within a unified, interactive web inter-
face. The platform enables seamless switching between editing modes,
region-aware design (e.g., ORF, 5'UTR, promoters), and strand-aware
targeting, which is essential for effective CRISPRi applications in pro-
karyotes. This level of customization is rarely available in competing
platforms and addresses critical needs for pathway engineering, genome
mining, and high-throughput functional genomics.

One of the most notable features is the “Expert mode”, which allows
advanced users to specify enzyme variants, PAM/TAM motifs, spacer
lengths, and editing windows—capabilities particularly relevant for the
rapidly expanding CRISPR and TnpB toolbox.

To provide an objective comparison with other mainstream guide
RNA design tools, Table 1 summarizes the key features, genome
compatibility, off-target prediction capabilities, and update status for
CRISPy-web 3.0, previous CRISPy versions, and several popular alter-
natives. Notably, only CRISPy-web 3.0 supports all the following in a
single platform: multi-mode design (Cas9, CRISPRi, TnpB/wRNA),
advanced parameter customization, off-target analysis for both Cas9 and
®RNA-based systems, high-throughput guide export, and flexible sup-
port for user-uploaded or non-model genomes (Table 1).

The ongoing evolution of CRISPR and TnpB technologies is driving
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the need for ever more adaptable and scalable computational tools.
CRISPy-web 3.0 is designed with this in mind—its backend architecture
supports genome-scale design, large batch processing, and rapid inte-
gration of new editing enzymes and target motifs. Looking ahead,
planned updates include support for prime editing, library-scale design
for pooled screens, and expanded enzyme/target annotation, ensuring
that the platform remains at the forefront of CRISPR-based microbial
genome engineering.
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