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Bio-inspired engineering of thiop
eptide antibiotics
advances the expansion of molecular diversity and utility
Zhi Lin1,*, Qingli He1,2,* and Wen Liu1,2,3
Thiopeptide antibiotics, which are a class of sulfur-rich and

highly modified peptide natural products, exhibit a wide variety

of important biological properties. These antibiotics are

ribosomally synthesized and arise from post-translational

modifications, exemplifying a process through which nature

develops the structural complexity from Ser/Thr and Cys-rich

precursor peptides. Following a brief review of the knowledge

gained from nature in terms of the formation of a common

thiopeptide scaffold and its specialization to individual

members, we highlight the significance of bio-inspired

engineering, which has greatly expanded the molecular

diversity and utility of thiopeptide antibiotics regarding the

search for clinically useful agents, investigation into new

mechanisms of action and access to typically ‘inaccessible’

biosynthetic processes over the past two years.
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Introduction
Over the past decades, peptide natural products (NPs)

with ribosomal origin have been a focus in the discovery

of new biosynthetic mechanisms [1]. Increasing evidence

indicates that post-translational modifications (PTMs) of

ribosomally synthesized precursor peptides are compara-

ble to non-ribosomal peptide synthetases in terms of the

creation of structurally complex molecules [2–4]. A pre-

cursor peptide typically consists of an N-terminal leader

sequence and a C-terminal core sequence (Figure 1a). A
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myriad of PTMs can be applied, in a manner either

dependent or independent of the former sequence, to

transform the latter sequence into mature product(s)

(Figure 1b). Although the building blocks are limited

to 20 proteinogenic amino acids, in contrast to a much

wider array of substrates found in the biosynthesis of non-

ribosomal peptide NPs [5], the sequences of precursor

peptides and the associated enzyme-processing strategies

have been shown to be highly variable and evolvable in

the formation of various ribosomal peptide NPs [6].

One example comes from thiopeptide antibiotics [7–10],

a growing family of sulfur-rich peptide NPs that are

ribosomally synthesized and post-translationally modified

(Figure 1c). These antibiotics possess a wide variety of

biological properties, e.g., anti-infection, anticancer and

immunosuppression, and are beneficial to humans largely

because of their highly functionalized unusual architec-

tures, which share a macrocyclic peptidyl core that con-

tains a six-membered heterocycle domain central to

multiple azoles and dehydroamino acids [11]. Recent

studies revealed a wide distribution of thiopeptide-

encoding sequences in the genomes of human microbiota

[12], generating interest in the roles played by related

products in microbe-host interactions. Derivatization

efforts has attracted considerable attention of molecular

engineering to further expand the chemical spaces of

thiopeptide antibiotics, improve their biological activities

and overcome physical disadvantages [13]; however, the

accessibility and efficiency of chemical synthesis are

often impeded by the structural complexity of these

compounds. The ribosomal origin of thiopeptide antibio-

tics was established in 2009 [14–18], garnering apprecia-

tion for the mechanisms that nature employs to develop

various PTM strategies and obtain individual thiopeptide

members from Cys and Ser/Thr residue-rich precursor

peptides. This appreciation has recently motivated ratio-

nal applications of various technologies for structural

diversification (as discussed below), resulting in a number

of thiopetide analogs, either expected or unexpected.

Formation of a common thiopeptide
framework and its specialization in nature
Thiopeptide antibiotics structurally appear to be the

macrocyclic variants of goadsporin-like NPs, each of

which derives a six-membered central heterocycle do-

main from a linear peptide possessing both azol(in)es and

dehydroamino acid residues [19]. The in vitro biosynthe-

sis of the thiopeptide member thiomuracin was successful

[20��], benefiting from the recent knowledge regarding
www.sciencedirect.com
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Figure 1
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cyclodehydratases in the biosynthesis of azol(in)e-con-

taining microcins and cyanobactins [21,22], dehydratases

in the biosynthesis of dehydroamino acid-involving lan-

tibiotics [23] and, particularly, the enzymes responsible

for Diels-Alder-like [4 + 2] cycloaddition reactions

[24,25]. Fabricating the structural features of thiopeptides

using a logical assembly of the above-mentioned enzy-

matic activities demonstrates the idea that in addition to

the precursor peptide-encoding gene, the biogenesis of a

common thiopeptide framework contains a minimum of

six conserved PTM genes (Figure 2). These genes code

for 1) an Ocin-ThiF-like protein responsible for engaging

the precursor peptide [26], 2) a YcaO-like superfamily

protein and a flavoprotein for Cys/Ser-residue processing

through phosphorylation-based cyclodehydration and

subsequent dehydrogenation to produce azoles [27], 3)

a pair of proteins with tRNAGlu-dependent glutamylation

and elimination activities for Ser/Thr-residue dehydra-

tion to yield dehydroamino acids [28], and 4) a unique

Diels-Alderase-like protein for intramolecular cross-

bridging to furnish the central heterocycle domain

(Figure 1b) [29]. According to these genetic character-

istics, many related biosynthetic gene clusters were

mined from the bacterial strains that were previously

unknown to be the thiopeptide producers [30].

In addition to common PTMs, the constitution of the

thiopeptide family, which includes over 100 natural mem-

bers, relies on the sequence permutation of precursor

peptides and the combination with specific PTMs that

are necessary for the individualized treatment of each

precursor peptide [31]. A comparative analysis of the

currently available biosynthetic gene clusters supports

the unifying theme in which nature develops diversity

(Figure 2). The incorporation of different specific PTM

elements into a minimum of thiopeptide biogenesis

results in the variable functionalization of a thiopeptide

framework, e.g., the decoration of the central domain and

the macrocyclic core system, the fabrication of a side-ring

system and the tailoring of the C-terminal extended side

chain [32–36]. Intriguingly, the specialization can proceed

before or after the formation of a thiopeptide-character-

istic scaffold, and many specific PTMs are interdepen-

dent on common PTMs [31]. In the pathway of the mono-

macrocyclic member thiocillin, the oxidative decarboxyl-

ation of the C-terminal Thr residue of the precursor

peptide is a pre-thiopeptide PTM that immediately

follows the formation of thiazol(in)es (Figure 1b). This

step is indispensable for Ser/Thr-residue dehydration and

subsequent intramolecular cyclization to furnish a thio-

peptide framework [37�]. In the pathway of the bi-mac-
(Figure 1 Legend) Biosynthetic origin, pathways and structures of thiopept

(a) Precursor peptides, whose N-terminal leader sequences (yellow) are bou

PTMs in the formation of a shared thiopeptide scaffold (middle) and specific

(right), respectively. (c) Chemical structures of thiocillin (left) and thiostrepto

color. The residues of each precursor peptide and their associated substitu

55–58].
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rocyclic member thiostrepton, the formation of a

quinaldic acid (QA) moiety and its incorporation into

the precursor peptide are evidently essential for the

construction of the thiopeptide scaffold (Figure 1b).

However, the conjugation of QA and the N-terminus

of the core peptide sequence was recently confirmed to

be a post-thiopeptide PTM during the formation of the

side-ring system of thiostrepton [38��].

Diversity-oriented biosynthesis by genetic
engineering of precursor peptides
Revealing the ribosomal origin of thiopeptide antibiotics

lays the foundation for the structural diversification of

peptidyl skeletons by sequence engineering of their

precursor peptides using microbial genetics approaches

[9]. This diversification, which has produced over hun-

dreds of new analogs, is of significant interest in con-

structing a thiopeptide-like NP library to search for new

drug leads and to evaluate the overall PTM capacity of

thiopeptide biosynthetic machineries with respect to the

variation of precursor peptides.

Facile preparation of thiopeptide variants considerably

simplifies systematic structure-activity (SAR) analysis,

which, in fact, is a challenge in current chemical synthe-

sis-based approaches due to the structural complexity of

the molecules. Mechanistically different from current

chemotherapeutics targeting the bacterial ribosome,

many thiopeptides (including thiocillin and thiostrepton)

are known to bind within a cleft that is located between

the L11 protein and the 23S rRNA of the 50S large

ribosomal subunit, thereby hindering translation factor

binding and subsequent protein synthesis [39]. A majority

of the surface buried by the molecule on the ribosome is

attributed to the shared macrocyclic core system; howev-

er, in this system, the contribution of residue composition

to binding affinity requires evaluation. Recently, satura-

tion mutagenesis of the residues within the macrocyclic

core of thiocillin was conducted (Figure 1c) [40��], lead-

ing to the production of a number of variants, of which

8 were more active than the parent compound against the

test strain Bacillus subtilis. These variants, either active or

inactive, were then subjected to a comparative analysis by

computational modeling, revealing that a side chain sub-

stitution changes the ring entropy/conformational flexi-

bility, which has a significant impact on molecular

binding, thus affecting antibacterial activity [40��].

A similar diversity-oriented biosynthesis has recently

been performed for thiostrepton engineering, with a focus

on the residues that conjugate the QA moiety within the
ide antibiotics, as exemplified by thiocillin (left) and thiostrepton (right).

nd by pathway-specific Ocin-ThiF-like proteins (blue). (b) Common

PTMs for its specialization toward thiocillin (left) and thiostrepton

n (right). The thiopeptide-characteristic hallmarks are highlighted in

tions that produced mature variants are listed [40��,41,42,43��,44�,
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Figure 2

Biogenesis for developing the structural diversity and complexity of thiopeptide antibiotics in nature. The biosynthetic gene clusters are composed

of the genes coding for precursor peptides (black), the common PTM genes (i.e., for Ocin-ThiF-like proteins (dark green), YcaO-like superfamily

proteins (dark blue), flavoproteins (light green), dehydratase pairs (purple) and Diels-Alderase-like proteins (yellow), various specific PTM genes

(white) and the accessory genes involved in self-resistance and regulation (gray). (b) Core peptide sequences of associated thiopeptide antibiotics.

The shared macrocyclic core systems (solid) and the optional side-ring systems (dashed) are indicated. The residues undergoing PTMs to form

various structural characteristics are highlighted in color, e.g., blue for azol(in)e, purple for dehydroamino acids, orange for 6-membered central

domain, and purple for side-ring construction [59–68].

www.sciencedirect.com Current Opinion in Biotechnology 2017, 48:210–219
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27-membered large side-ring system (Figure 1c)

[41,42,43��,44�]. Saturation mutagenesis of Ile1, Ala2

and Ala4 at the N-terminus of the core sequence resulted

in 6, 8 and 16 new thiostrepton variants, respectively,

revealing the discrepancy in the permissibility of PTMs

to the changes at these positions. In particular, the double

mutation of Ile1Val and Ala2Ser in the thiostrepton-

producing S. laurentii strain allowed the robust production

of siomycin, a naturally occurring analog that is more

potent than thiostrepton in immunosuppressive and an-

ticancer activities, thereby possessing great potential for

medicinal applications [44�]. This synthetic biology ap-

proach is promising and alleviates the concern regarding

the production of siomycin in S. sioyaensis, the original

producer that has been shown to be highly resistant to

fermentation optimization and genetic manipulation [45].

The vast majority of resultant thiostrepton variants exhib-

ited in vitro translation-inhibitory activity comparable to

that of the parent compound; however, they appeared to

be divergent in antibacterial activity against various test

strains. The crystallization of the 50S large ribosomal

subunit in complex with thiostrepton has revealed that

the side-ring residues of the molecule, except for QA, are

solvent exposed and are not involved directly in ribosome

binding [39]. Whether residue variation at these positions

has an effect on the ring entropy/conformation flexibility

of the macrocyclic core system (as shown in thiocillin

studies) through the side-ring system remains to be

determined. In contrast, most thiostrepton variants

retained 20S proteasome-inhibitory activities, which were

suggested to be related to antimalarial and anticancer

properties [42,43��].

Incorporation of naturally unavailable building
blocks
Genetic encoding of noncanonical amino acids (ncAAs)

[46], which is an effective approach to expand the build-

ing block inventory in bacteria, has been utilized to

incorporate naturally unavailable groups into many ribo-

somally synthesized and post-translationally modified

peptide NPs to increase their structural diversity and

chemical reactivity. Until recently, thiopeptide engineer-

ing using this approach was challenging, because most of

the thiopeptide members are produced by Gram-positive

bacteria [11], where orthogonal systems composed of

nonsense or frameshift suppressor aminoacyl-tRNA

synthetases and the associated tRNAs had not been

established. The development of an orthogonal amber

suppressor aminoacyl-tRNA synthetase/tRNA pair in Ba-
cillus cereus, the Gram-positive strain producing thiocillin

(Figure 3a), enabled the application of this approach

[47��]. Various ncAAs were individually introduced into

the sites of the thiocillin precursor peptide that are

permissive to substitutions, albeit varying in efficiency,

producing tens of new ncAA-bearing mature variants

through PTM processing. As expected, the variants with

bioorthogonal chemical reactivity were amenable to
Current Opinion in Biotechnology 2017, 48:210–219
specific post-biosynthesis modifications, either for further

functionalizing the thiocillin scaffold or for developing

probes to investigate the biological actions that are less

characterized. In fact, genetic incorporation of ncAAs

using orthogonal systems has been well established in

the Gram-negative host Escherichia coli, where reconsti-

tuting thiopeptide biosynthetic pathways would be ben-

eficial for the application of this approach to a much wider

array of thiopeptide members.

Chemoenzymatic synthesis of thiopeptide variants using

the enzymes that catalyze Diels-Alder-like [4 + 2] cyclo-

addition reactions provides an alternative to introduce

synthetic chemical groups into thiopeptide members that

share a pyridine-like central domain [48��]. The forma-

tion of this heterocycle domain often occurs during the

late stages of the biosynthetic pathways [29], thereby

allowing for enzymatic cross-bridging of a chemically

synthesized and highly modified linear precursor to afford

a thiopeptide scaffold. Related Diels-Alder-like enzymes

function in the presence of a conserved recognition

sequence that is approximately 10 amino acids long,

which resides at the C-terminus of the leader part of

each precursor peptide. This finding greatly simplifies the

process of precursor preparation, which involves the

application of solid-phase peptide synthesis (SPPS) to

prepare an azol(in)e and dehydroamino acid-containing

core peptide and a recognition sequence prior to ligation

(Figure 3b). Chemoenzymatic synthesis of thiocillin and

thiomuracin variants was examined to test the require-

ments for the macrocyclization of the core sequences in

terms of their composition, size and extent of functiona-

lization [48��]. By exploiting the advances in chemical

synthesis, this approach possesses potential for further

development to achieve thiopeptide analogs that are not

accessible by sole biosynthetic methods.

Target-oriented design and precursor-
directed mutational biosynthesis
Thiostrepton appears to be unique in the thiopeptide

family, primarily because of the QA moiety residing

within its side-ring system [39]. QA approaches A1067,

a key nucleobase of the 50S large subunit that contributes

to ligand interaction and mutation-induced bacterial re-

sistance [49]. Focusing on the selective modification of

this biologically relevant moiety, the introduction of

pharmaceutical groups (i.e., fluorine and methyl) into

thiostrepton was conducted [50��]. The electronic and

steric effects resulting from this effort can selectively

enhance the interaction of QA and A1067, while the

overall binding nature of molecules to the bacterial ribo-

some, which primarily depends on the thiopeptide core

scaffold, is maintainable. Because these designed unnat-

ural variants are structurally complex and difficult to

prepare using the current chemical synthesis methods,

a precursor-directed mutational biosynthesis approach

was developed for their robust production in S. laurentii
www.sciencedirect.com
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Figure 3

Bio-inspired incorporation of naturally unavailable building blocks. (a) Introduction of ncAAs (e.g., Ne-prop-2-ynyloxycarbonyl-l-lysine, for replacing

residue Thr3 of the core sequence of the precursor peptide) into thiocillin using the orthogonal system established in the Gram-positive host

Bacillus cereus. (b) Chemoenzymatic route toward of the synthesis of thiopeptide variants. The synthetic steps are indicated by the dashed

arrows, in contrast to the enzymatic conversion, which is shown by the solid arrow.

www.sciencedirect.com Current Opinion in Biotechnology 2017, 48:210–219
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Figure 4

Production of thiostrepton variants that bear a selectively fluorinated or methylated QA moiety (purple) in S. laurentii. The ester analogs of the key

quinoline ketone intermediate of QA were chemically synthesized and fed individually into a S. laurentii mutant strain. This mutant strain, which

lacks the first 2-methylation step to initiate QA formation, is incapable of producing thiostrepton. After hydrolysis in vivo, each exogenous quinoline

ketone analog can surrogate the wild-type intermediate being incorporated, leading to the production of thiostrepton analogs with designed

modifications.
by fermentation according to recently uncovered biosyn-

thetic mechanisms in the formation of QA (Figure 4)

[35,50��].

The resultant variants are more potent than thiostrepton

and control chemotherapeutics, e.g., vancomycin [50��].
The sensitive pathogens included many clinical isolates

that are resistant to current drugs, e.g., methicillin-

resistant Staphylococcus aureus (MRSA), penicillin-resis-

tant Streptococcus pneumoniae (PRSP), and vancomycin-

resistant enterococci (VRE), demonstrating the rationale

for QA modification. Remarkably, using these variants as

chemical probes revealed an unexpected new mecha-

nism of thiostrepton, which is capable of inducing host

autophagy during treatment with intracellular pathogens

in addition to directly targeting the bacterial ribosome

[51��]. This intracellular action, which is unique to

thiostrepton-type thiopeptide antibiotics and is sensi-

tive to the modification of the QA group, may inspire

future changes in the treatment of intracellular patho-

gens since the contribution of host cell responses to

antimicrobial chemotherapy has been increasingly rec-

ognized. Recently, the combination of QA modification

and C-terminal tailoring that has improved anti-infec-

tious activity was conducted and showed a synergistic

engineering effect [52], as exemplified by the extremely

potent methyl ester analog of 50-fluoro-thiostrepton,

which exhibited minimum inhibitory concentrations at
Current Opinion in Biotechnology 2017, 48:210–219
<0.125 ng/mL, 0.25–0.5 ng/mL, 0.25–0.5 ng/mL and

0.125–0.5 ng/mL against various PRSP, MRSA, VRE

and Clostridium difficile clinical isolates, respectively.

Remarkably, 60-fluorination of QA lowers the reactivity of

this moiety and slows the cyclization process for side-ring

closure, which rapidly proceeds in S. laurentii without this

modification, thereby causing the accumulation of an

open side-ring epoxy intermediate [38��]. This unexpect-

ed finding ultimately revealed the maturation process of

thiostrepton, which involves an unusual dual activity of an

a/b hydrolase fold protein for cascade endopeptidyl hy-

drolysis/leader sequence removal and epoxide ring open-

ing/side-chain macrocyclization in the biosynthetic

pathway [38��,53]. The endopepeptidase activity of this

protein, which is responsible for selective hydrolysis

between Met-1 and Ile1 of a wild-type precursor peptide,

appears to be promiscuous and tolerates the substitution

of either of the residues with nonpolar amino acids. By

exploiting the coupled activity for epoxide ring opening

and macrocyclization, changing the size of the side-ring

system is practical, as evidenced by the results from the

mutation of Ala2Ile or Ala2Val, which created a new

hydrolytic site between Ile1 and Ile2 or between Ile1

and Val2 of each recombinant precursor peptide, thus

allowing the production of an additional thiostrepton

variant that bears the contracted QA-containing side-ring

system [43��].
www.sciencedirect.com
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Conclusion and perspectives
Following a brief review concerning the generality and

specificity of the biosynthesis of thiopeptide antibiotics,

we focused on a few recent examples, primarily from the

studies on the members thiocillin (mono-marcocyclic)

and thiostrepton (bi-macrocyclic), to highlight the

approaches used to accelerate the diversification process

for the expansion of molecular utility in searching for

clinically useful variants, examining new modes of action

and accessing the biosynthetic processes that are difficult

to realize. As with other ribosomally synthesized and post-

translationally modified peptide NPs, thiopeptide anti-

biotics feature a highly evolvable ‘template’-biosynthetic

logic that facilitates molecular engineering [54]. This

logic has not been fully appreciated to date, and the

associated PTMs involve a number of unusual biochemi-

cal mechanisms that remain to be determined. A further

understanding of these mechanisms would significantly

facilitate the design, development and utilization of

compatible machineries, synthetic, biosynthetic or both,

to expand the chemical spaces of thiopeptide antibiotics

and their associated biological functions.
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