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Transposon molecular domestication and 
the evolution of the RAG recombinase
Yuhang Zhang1,8, Tat Cheung Cheng2,8, Guangrui Huang3, Qingyi Lu3, Marius D. Surleac4, Jeffrey D. Mandell1,  
Pierre Pontarotti5,6, Andrei J. Petrescu4, Anlong Xu3,7*, Yong Xiong2* & David G. Schatz1*

Domestication of a transposon (a DNA sequence that can change its position in a genome) to give rise to the RAG1–RAG2 
recombinase (RAG) and V(D)J recombination, which produces the diverse repertoire of antibodies and T cell receptors, 
was a pivotal event in the evolution of the adaptive immune system of jawed vertebrates. The evolutionary adaptations 
that transformed the ancestral RAG transposase into a RAG recombinase with appropriately regulated DNA cleavage and 
transposition activities are not understood. Here, beginning with cryo-electron microscopy structures of the amphioxus 
ProtoRAG transposase (an evolutionary relative of RAG), we identify amino acid residues and domains the acquisition or 
loss of which underpins the propensity of RAG for coupled cleavage, its preference for asymmetric DNA substrates and 
its inability to perform transposition in cells. In particular, we identify two adaptations specific to jawed-vertebrates—
arginine 848 in RAG1 and an acidic region in RAG2—that together suppress RAG-mediated transposition more than 
1,000-fold. Our findings reveal a two-tiered mechanism for the suppression of RAG-mediated transposition, illuminate 
the evolution of V(D)J recombination and provide insight into the principles that govern the molecular domestication 
of transposons.

Jawed vertebrates have evolved a sophisticated adaptive immune sys-
tem that relies on the assembly of immunoglobulin and T-cell receptor 
genes from arrays of V, D and J gene segments in developing B and T 
lymphocytes. The assembly reaction, known as V(D)J recombination, 
is initiated when RAG cleaves adjacent to the gene segments at recom-
bination signal sequences (RSSs) that comprise conserved heptamer 
and nonamer elements separated by a 12- or 23-base pair (bp) spacer 
(12RSS and 23RSS, respectively)1 (Fig. 1a). DNA cleavage by RAG 
occurs by a nick–hairpin mechanism in which hairpin formation 
occurs in a coordinated (coupled) manner in a synaptic complex that 
contains one 12RSS and one 23RSS, a restriction known as the 12/23 
rule (Fig. 1b). The 12/23 rule and coupled cleavage are fundamental 
features of RAG that are thought to contribute to the proper orches-
tration of V(D)J recombination and protection of genome integrity1–3.

The ‘molecular domestication’ of transposons has contributed 
broadly to the evolution of new proteins and activities4–6, with RAG and 
V(D)J recombination representing a paradigmatic example of this pro-
cess. The current evidence supports a model in which RAG1 and RAG2 
evolved from the transposase genes of an ancient ‘RAG transposon’, 
while disassembled (‘split’) immunoglobulin and T cell receptor genes 
arose from the insertion of a transposon into a receptor gene, with the 
inserted terminal inverted repeats (TIRs) of the transposon becoming 
the RSSs7–9. This model was strongly supported by the discovery, in the 
cephalochordate amphioxus, of ProtoRAG—a transposon with numer-
ous features that implicate it as a descendent of the RAG transposon10.

The RAG transposon domestication model predicts a critical diver-
gence during chordate evolution in which, in jawed vertebrates, the 
RAG transposase acquired properties of a recombinase, whereas in 
amphioxus (and probably other invertebrate chordate lineages11), 
transposase functions were retained. A divergence in post-cleavage 
reaction steps (Fig. 1b) would have been particularly pivotal, with 

RAG-generated DNA ends preferentially undergoing end joining 
(recombination) instead of transposition, and ProtoRAG retaining a 
strong preference for transposition over end-joining10. Indeed, RAG 
is notably poor at performing transposition in living cells12–14, with 
only a single bone fide transposition event thus far identified in mice 
or humans15,16. How the ancestral RAG transposon was domesticated 
to yield a RAG recombinase with minimal in vivo transposition activ-
ity and a strong propensity for coupled cleavage of asymmetric sub-
strates is a key question in the evolution of V(D)J recombination and 
adaptive immunity in jawed vertebrates. Here, we use the structure of 
ProtoRAG transposase as a lens through which to view this evolution-
ary transformation.

Uncoupled DNA cleavage by ProtoRAG
ProtoRAG from Branchiostoma belcheri (Extended Data Fig. 1a) is 
composed of convergently transcribed RAG1-like (BbRAG1L) and 
RAG2-like (BbRAG2L) genes flanked by 5′ and 3′ TIRs that comprise 
a heptamer similar to the RSS heptamer, an adjacent, conserved 9–10-
bp element referred to as TIR region 2 (TR2) and additional flanking 
sequences10 (Fig. 1a). The BbRAG1L protein contains a ‘core’ region 
(cBbRAG1L; amino acids (aa) 468–1136) with sequence similarity (33% 
aa identity) to the core region of RAG1 (cRAG1; aa 384–1008 in mouse; 
Fig. 1c). Within cRAG1 and cBbRAG1L, we define catalytic cores (CC 
and CC*, respectively) that lack one or more DNA binding elements 
(Fig. 1c). BbRAG2L resembles only core RAG2 (aa 1–350 in mouse; 
22% aa identity) and lacks all RAG2 C-terminal elements, including 
an acidic hinge and plant homeodomain finger (Fig. 1c).

With a cleavage substrate containing a 5′/3′TIR pair, both core 
BbRAGL (cBbRAG1L with BbRAG2L; Fig. 1d) and full-length 
BbRAG1L–BbRAG2L (Extended Data Fig. 1b) generate a strong band 
that corresponds to single cleavage at the 3′TIR (black asterisk) and 
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is comparable in intensity to the 5′/3′TIR double cleavage band (red 
asterisk). By contrast, core RAG (cRAG) predominantly generates the 
12/23RSS double cleavage product (Fig. 1d). Furthermore, both core 
and full-length BbRAGL robustly cleave substrates containing either a 
single 5′TIR or a single 3′TIR (Fig. 1e, Extended Data Fig. 1b) whereas 
cRAG cleaves single RSS substrates poorly (Fig. 1f). These results indi-
cate that DNA cleavage by BbRAGL is less tightly coupled than cleavage 
by RAG.

Deletion of the nonamer-binding domain (NBD) from cRAG1 
eliminates RAG activity (Fig. 1f), whereas cBbRAGL that lacks its cor-
responding NBD* domain (which has limited sequence similarity to 
NBD but, similar to the NBD17, forms a dimer in solution; Extended 
Data Fig. 1c, d) retains substantial activity (Fig. 1e). In addition, 
although the C-terminal tail (CTT) of RAG1 is dispensable for activ-
ity2, the C-terminal tail of BbRAG1L (CTT*; Fig. 1c) is important for 
BbRAGL cleavage activity10 (Fig. 1e). Therefore, RAG1 and BbRAG1L 
have evolved different dependencies on the N- and C-terminal portions 
of their core regions.

RAG and BbRAGL show a third important difference: while both are 
active transposases in vitro10,18,19, only BbRAGL exhibits substantial 

transposition activity in cells10,12–16 (Fig. 1g). We note that BbRAGL 
activity is assessed here in a heterologous (mammalian) cell context.

Structure of the ProtoRAG transposase
To better understand these functional differences, we determined the 
structure of cBbRAGL together with HMGB1 (a DNA-bending cofac-
tor that stimulates cleavage by RAG1 and BbRAGL10) bound to the 
3′TIR (which is bound more efficiently than the 5′TIR by the cBbRAGL 
tetramer; Extended Data Fig. 2a–c). Single-particle cryo-electron 
microscopy (cryo-EM) analysis yielded structures for cBbRAGL–
HMGB1 bound to intact and nicked 3′TIRs (designed to mimic the 
first step of cleavage as in Fig. 1b, inset), with a resolution of 4.3 Å 
for the nicked 3′TIR structure after application of two-fold symmetry 
(Fig. 2a, Extended Data Fig. 2d–f, Extended Data Table 1).

cBbRAGL–3′TIR complexes contain a central cBbRAG1L dimer 
capped by two monomers of BbRAG2L and two DNA duplexes (Fig. 2a, 
Extended Data Fig. 2g, h). Rather than the Y shape adopted by cRAG 
complexes20–23 (Extended Data Fig. 3a), cBbRAGL complexes were 
roughly V-shaped because no density was discernable for NBD*, 
HMGB1 or the heptamer-distal 25 bp of the TIRs. Despite an estimated 
700 million years of evolutionary divergence, ProtoRAG and RAG 
exhibit a marked degree of structural similarity. cBbRAG1L recapitulates 
the structural domains of the RAG1 catalytic core, and BbRAG2L—sim-
ilar to RAG2—adopts a structure consistent with a six-bladed β-propel-
ler fold (Fig. 2b, Extended Data Fig. 3b–d). Structural similarity is clear 
in the vicinity of the active site and heptamer, with the nicked 3′TIR 
exhibiting two flipped (extrahelical) bases similar to those of nicked 
RSSs bound by RAG21,22 (Fig. 2c, Extended Data Fig. 3e). Similar to 
RAG21–23, BbRAGL switches from an ‘open’ to a ‘closed’ conformation 
upon TIR nicking and is particularly flexible in the BbRAGL–intact TIR 
complex (Extended Data Fig. 3f–h), with both molecules of BbRAG1L 
making extensive contacts with both DNA molecules (Extended Data 
Fig. 4). These notable structural parallels support the hypothesis that 
RAG and BbRAGL evolved from a common RAG transposon ancestor.

A novel ProtoRAG DNA-binding domain
The cryo-EM map of the complex of cBbRAGL and nicked 3′TIR con-
tained an unaccounted-for density at the C terminus of the BbRAG1L 
catalytic core that could readily accommodate the Cα backbone of 
BbRAG1L CTT* (Extended Data Fig. 5a) and was in close proximity 
to the TR2 element of the 3′TIR (Fig. 2d). This suggested that CTT* 
is a DNA-binding domain that—together with residues from the 
opposite subunit of BbRAG1L—forms a clamp to bind TR2 (Fig. 2e). 
CTT* exhibits sequence conservation among RAG1-like proteins from 
invertebrates (Fig. 2f) but not with vertebrate RAG1 CTT (Extended 
Data Fig. 5b). Mutation of residues Cys1114, His1222 or Cys1227 in 
the highly conserved CX2CX3GHX4C motif of CTT* reduced activity, 
whereas mutation of two less well-conserved residues had no discern-
able effect on activity (Fig. 2g), which indicates that integrity of the 
conserved CCHC motif is important for CTT* function. Consistent 
with the hypothesis that BbRAGL makes important contacts with TR2, 
the heptamer and TR2 are the only portions of the TIR that are essential 
for cleavage (Extended Data Fig. 5c–g).

Modular domain function and the 12/23 rule
To investigate how the distinct functional properties of RAG and 
BbRAGL relate to structural domains, we generated chimeric RAG1–
BbRAG1L proteins in which the BbRAG1L catalytic core—with or 
without CTT*—was fused with the RAG1 NBD (Fig. 3a, b) and, recip-
rocally, the RAG1 catalytic core was fused to NBD* and/or CTT* of 
BbRAG1L (Fig. 3c). Corresponding hybrid RSS–TIR DNA targets were 
used as cleavage substrates (Fig. 3b, c).

When supplied with the RAG1 NBD, the BbRAG1L catalytic 
core no longer required CTT* (Fig. 3d) and became dependent on 
the RSS nonamer for activity (Fig. 3e), with spacer length require-
ments (12 ± 1 bp or 23 ± 1 bp) identical to those of RAG (Extended 
Data Fig. 6a, b). Reciprocally, when deprived of its NBD, the RAG1 
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catalytic core became dependent on CTT* and TR2 for activity and 
was active without NBD* or any portion of the DNA substrate except 
the heptamer and TR2 (Fig. 3f–h). Thus, CTT* renders the RAG1 
catalytic core independent of an NBD, the RSS nonamer, substrate 
asymmetry and—hence—the 12/23 rule. Notably, proteins that con-
tain the BbRAG1L catalytic core exhibit uncoupled cleavage (Fig. 3d) 
whereas those that contain the RAG1 catalytic core display coupled 
cleavage (Extended Data Fig. 6c, d). We conclude that the catalytic 
cores of RAG1 and BbRAG1L dictate the propensities of these enzymes 
for coupled versus uncoupled cleavage, and that the functional organ-
ization of ProtoRAG TIRs is different from that of RSSs because of 
a dependency on different DNA-binding domains (Extended Data 
Fig. 6e). Furthermore, our findings argue that the choice of dominant 
DNA-binding domain was pivotal for the evolution of the 12/23 rule, 
as CTT* would need to have been eliminated to allow dependency on 
the rule.

Residues that control coupled cleavage
While searching for features that might explain the intrinsic func-
tional differences between the catalytic cores of RAG and BbRAGL, 
we observed that Ser963—which flanks the RAG1 catalytic gluta-
mate Glu962—is positioned to form a hydrogen bond with Glu649 
in apo RAG (Fig. 4a) and RAG bound to intact RSSs (Fig. 4b), but 
not when RAG is bound to nicked RSSs and poised for hairpin for-
mation (Fig. 4c). BbRAG1L cannot form this hydrogen bond because 
Glu649 and Ser963 have been replaced by Val751 and Ala1064 (Fig. 4d). 
Whether bound to intact or nicked TIRs, BbRAG1L adopts a structure 
similar to that of RAG1 bound to nicked DNA (Fig. 4e, f, Extended 
Data Fig. 6f) and therefore appears to be constitutively poised for hair-
pin formation. Notably, the Glu649–Ser963 amino acid pair, which is 
strictly conserved in jawed vertebrate RAG1, is absent from known 
invertebrate RAG1-like proteins (Fig. 4g).

Incorporating residues of BbRAG1L into RAG1 revealed that the 
RAG mutants RAG1(E649V), RAG1(S963A) and RAG1(E649V/
S963A) showed increased uncoupled cleavage activity when com-
pared to the wild type (Fig. 4h, Extended Data Fig. 6g). By contrast, the 
RAG1(Y994F) mutation had no effect and the RAG1(N961A) mutant 
showed lower uncoupled cleavage than wild-type RAG1 (Fig. 4h, 
Extended Data Fig. 6g, h). Reciprocal mutations in BbRAG1L revealed 
that the BbRAG1L(V751E) mutant—but not the BbRAG1L(A1064S) 
mutant—showed decreased uncoupled cleavage, whereas the 
BbRAG1L(V751E/A1064S) double mutation almost abolished cleav-
age (Extended Data Fig. 6i). We propose that Glu649 in RAG1 helps 
to dictate coupled cleavage by mechanisms that are partially depend-
ent on formation of a hydrogen bond with Ser963, and that because 
BbRAG1L lacks Glu649, it is more likely than RAG to adopt an active 
site configuration that is ‘hairpin-competent’. Notably, RAG1(E649A) 
has previously been shown to exhibit increased uncoupled cleavage 
activity in vitro and in vivo24.

Two-tiered control of RAG transposition
We reasoned that structural comparisons of RAG and BbRAGL might 
shed light on their markedly different capacities to perform trans-
position in cells. In the RAG post-cleavage complex, RAG1 Arg848 
is near the RSS 3′-OH that attacks target DNA during transposition 
(Fig. 5a). Arg848 is strictly conserved in jawed vertebrate RAG1 but 
is replaced by methionine in BbRAG1L and other invertebrate RAG1-
like proteins (Fig. 5b, c). RAG1(R848M) cleaves DNA at wild-type 
levels and exhibits a notable (approximately eightfold) increase in 
transposition activity in vitro relative to the wild type; this is man-
ifest as efficient generation of a slow-mobility band that represents  
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inversion-circle intramolecular transposition products18 (Fig. 5d, 
Extended Data Fig. 7a, b) and enhanced transposition of an RSS-
flanked antibiotic-resistance gene into a target plasmid (Fig. 5e, 
Extended Data Fig. 7c). Therefore, methionine at RAG1 position 
848 stimulates RAG-mediated transposition at a post-cleavage step. 
Several amino acids at position 848 can support cleavage, with alanine 
stimulating and glutamate suppressing transposition relative to the 
wild type (Extended Data Fig. 7d, e).

Notably, in an in vivo plasmid-to-plasmid transposition assay 
(Extended Data Fig. 8a), the R848M mutation in RAG1 increased activ-
ity to detectable levels (Fig. 5f) whereas a reciprocal M949R mutation 
in BbRAG1L decreased activity relative to the wild type (Extended Data 
Fig. 8b, c). RAG1(R848M) was, however, still about 100-fold less active 
than BbRAGL (Fig. 5f), which raises the possibility that additional 
mechanisms suppress RAG-mediated transposition in vivo.

The RAG2 protein used in the assays of Fig. 5f (aa 1–383) contains 
part of the RAG2 acidic hinge (Fig. 1c), a domain that is present in 
jawed vertebrate RAG2 but absent from BbRAG2L10 and other known 
invertebrate RAG2-like proteins11. Notably, complete removal of the 
acidic hinge (RAG2 aa 1–350) increased in vivo transposition activ-
ity about 100-fold (Fig. 5g); this result was reproduced in a second 
cell line and with human RAG proteins (Extended Data Fig. 8d, e). 
Stimulation of transposition depended strongly on the RAG1(R848M) 
mutation, as wild-type RAG1 lacked detectable transposition activity 
when paired with RAG2(1–350) (Fig. 5g). Together, RAG1 Arg848 
and the RAG2 acidic hinge suppress RAG-mediated transposition in 
vivo more than 1,000-fold. Transposition products generated in vitro 
and in vivo showed predominantly 5-bp target site duplications, as 
expected18,19 (Extended Data Fig. 7f). Deletion of the RAG2 acidic 
hinge did not increase RAG-mediated transposition or DNA cleavage 

in vitro (Extended Data Fig. 7g, h) or substantially alter protein expres-
sion or V(D)J recombination activity in vivo (Extended Data Fig. 8f, 
g). Therefore, the RAG2 acidic hinge suppresses transposition specif-
ically at a post-cleavage step and only in cells. Mapping experiments 
revealed that aa 362–383 have a critical role in suppressing in vivo 
transposition by RAG2(1–383) (Extended Data Fig. 8h, i). In assays 
using RAG2(1–350), a RAG1(E649V) mutation boosted transposition 
whereas the S963A mutation had little effect (Fig. 5g). We conclude that 
evolutionary adaptations arose early during jawed vertebrate evolution 
in RAG1 and RAG2 to provide two-tiered protection against RAG-
mediated transposition.

To test whether this conclusion extends to RAG-mediated transposi-
tion into the genome, we used a plasmid-to-genome transposition assay, 
with transposition target sites identified by high-throughput sequenc-
ing (Extended Data Fig. 9a–c). When paired with RAG2(1–350), 
RAG1(E649V/R848M), wild-type RAG1 and no RAG1 yielded 930, 
16 and zero independent transposition events, respectively (Fig. 5h, 
Extended Data Fig. 9d). Insertion sites were found on all chromosomes 
(Extended Data Fig. 9e) and were strongly biased to active genes, par-
ticularly in the vicinity of the transcription start site (Extended Data 
Fig. 9f-h). Of the 930 RAG1(E649V/R848M)-mediated insertions, 180 
(19%) occurred in protein-coding exons (P = 4 × 10−82), which is 
noteworthy given that the primordial split antigen receptor gene of 
jawed vertebrates is believed to have been generated by insertion of the 
RAG transposon into an exon7,25,26. These data show that reversal of the 
protective adaptations acquired by jawed vertebrate RAG1 and RAG2 
‘reawakens’ the RAG transposase and enables widespread transposition 
into genes and exons in the human genome.

Molecular domestication of the RAG transposon
The evolutionary adaptations that protect jawed-vertebrate lympho-
cytes from insertional mutagenesis caused by RAG-mediated trans-
position have been a long-standing target of investigation27,28 and, a 
priori, could have involved changes in the RAG proteins, changes in 
the host cellular milieu or both. Efficient RSS ligation was unlikely 
to suffice as a protective mechanism because signal joints can be 
re-cleaved and transposed by RAG29. Our findings reveal two critical 
adaptations, intrinsic to the RAG proteins and found only in jawed 
vertebrates, that each potently suppress RAG-mediated transposition 
in vivo and together render the reaction almost undetectable. Similar 
to RAG1 Arg848, the RAG2 acidic hinge suppresses transposition at a 
post-cleavage step of the reaction, but—unlike Arg848—its suppres-
sive effects are detectable only in the context of living cells. The RAG2 
acidic hinge has previously been implicated in the regulation of RAG 
catalytic activity30, chromatin targeting31, repair pathway choice32,33 
and stability of the RAG-signal end complex33. It remains to be deter-
mined whether these activities are relevant to the suppression of RAG-
mediated transposition in vivo and whether other proteins contribute 
to this suppression.

Accumulating evidence supports a model for RAG evolution 
(Extended Data Fig. 10) in which a Transib transposon34 captured a 
RAG2-like open reading frame in an early deuterostome to give rise to 
the original RAG transposon, which in turn gave rise to RAG1, RAG2 
and RSSs in jawed vertebrates and RAG1L and RAG2L transposable 
elements and gene pairs in invertebrates9. We propose that the mod-
ular design of the RAG complex—with largely autonomous catalytic 
cores, swappable DNA binding modules and a RAG2 accessory subu-
nit—facilitated the adaptation of RAG family enzymes to changing host 
environments and functional demands, including the adaptations in 
jawed vertebrates that led to a ‘tamed’ RAG recombinase that possesses 
coupled cleavage activity, adherence to the 12/23 rule and suppressed 
transposition activity (Extended Data Fig. 10). Our findings contribute 
to the paradigm of transposon molecular domestication4,6, which is 
now recognized to encompass elements in almost all branches of life 
ranging from CRISPR in bacteria35 to active transposases encoded in 
the human genome, the function and process of domestication of which 
remain unknown36,37.
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transposition product was confirmed to contain inversion circles by 
inverse PCR DNA sequencing18. e, Results of in vitro transposition 
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Methods
Statistical methods were not used to predetermine sample size and experiments 
were not randomized. Investigators were not blinded to allocation during experi-
ments and outcome assessment.
Plasmid generation. pTT5M, a derivative of pTT5 containing a maltose-binding 
protein (MBP) open reading frame (ORF), previously described10, was modified by 
inserting an in frame PreScission Protease cleavage site at the C terminus of MBP, 
to create pTT5MP. Codon-optimized BbRAG1L core (aa 468–1136) and full-length 
BbRAG2L were cloned into pTT5MP at a NotI restriction site that lies downstream 
of the protease cleavage site by In-Fusion cloning. Truncated BbRAG1L ORFs (aa 
468–1136, aa 484–1136 and ∆NBD (aa 547–1136)) were cloned into pTT5M, as 
were mouse RAG1 core (aa 384–1008), RAG1 core ∆NBD (aa 462–1008) and 
RAG2 core (aa 1–383) ORFs. Chimaera protein ORFs and point mutants thereof 
were cloned into pTT5MP. No difference in expression levels was noted between 
pTT5M and pTT5MP vectors.

A 5′TIR and a 3′TIR, each with 3′ flanking ProtoRAG sequences, were inserted 
together into the BamHI site of pUC19 by In-Fusion, creating a substrate with 
402 bp between the tips of the TIRs. This vector was further modified to elimi-
nate all instances of 5′-CAC in the DNA between the TIRs and in the ~130 bp of 
pUC19 flanking the 5′TIR and ~280 bp of pUC19 flanking the 3′TIR. This CAC-
free region containing the TIRs was then subcloned into the EcoRV/NruI sites of 
pBR322 to create pB-5′/3′TIR. pB-5′/3′TIR was modified by deletion of the 5′TIR 
or the 3′TIR using PCR and In-Fusion cloning to create pB-5′TIR and pB-3′TIR. 
Other alterations to replace or modify the TIRs of pB-5′/3′TIR, pB-5′TIR or 
pB-3′TIR, using In-Fusion cloning, resulted in plasmids containing the needed 
combinations of RSS, chimeric TIR/RSS and scrambled TIR mutant sequences. 
The mutations that scrambled portions of the TIR were made by changing A to C, 
T to G, C to A and G to T.
Protein expression and purification. pTT5MP-BbRAG1L core and pTT-
5MP-BbRAG2L plasmids were cotransfected into expi293F cells using the 
ExpiFectamine 293 Transfection Kit. Cells (30–200 ml culture) containing co-ex-
pressed proteins were collected 5 days after transfection by centrifugation (500g) 
and frozen at –80 °C. Cells were re-suspended in lysis buffer (25 mM Tris, pH7.5, 
1M KCl, 1 mM DTT) and disrupted by three cycles of freezing in liquid nitrogen 
and thawing in a room temperature water bath. Cell lysates were further disrupted 
by dounce homogenization and centrifuged at 45,000 r.p.m. (Beckman Coulter 
Optima LE-80K Ultracentrifuge, Type 50.2 Ti rotor) for 1 h at 4 °C (all subsequent 
steps at 4 °C), and the supernatant was mixed with pre-equilibrated amylose resin 
and incubated for 2 h with continual rotation. The beads were loaded onto a gravity 
flow column and washed with 50–100 ml of lysis buffer and protein eluted with 
5–10 ml of elution buffer (25 mM Tris, pH7.5, 0.5M KCl, 1 mM DTT, 40 mM malt-
ose) depending on the initial cell culture volume. The eluate was further purified 
by size-exclusion chromatography (SEC) on a Superdex 200 Increase 10/300 GL 
column in 20 mM HEPES pH7.6, 0.5 mM TCEP, 150 mM KCl and 5 mM MgCl2 
or 5 mM Ca(OAc)2 (Ca2+ buffer used when protein was purified for assembling 
protein–DNA complexes for cryo-EM because Ca2+ supports DNA binding but not 
cleavage by RAG1 and BbRAGL10). SEC peak fractions were collected and pooled 
and protein concentrated to 4–10 µM using an Amicon centrifugal concentrator 
and frozen at –80 °C. Other proteins were expressed and purified following a sim-
ilar procedure. In all cases, the RAG1 core, BbRAG1L, or chimeric protein was 
co-expressed with the appropriate RAG2 core or BbRAG2L protein.

Full length (FL) His6–hHMGB1 and His6–hHMGB1∆C (aa 1–165 lacking the 
acidic C-terminal region) were expressed and purified as previously described10,39.

HEK293T cells were obtained from ATCC, expi293F cells were obtained from 
Thermo Fisher Scientific, and HCT116 cells were obtained from E. Hendrickson, 
University of Minnesota. Cell lines used were not authenticated or tested for myco-
plasma contamination.
DNA cleavage and cryo-EM substrates. Linear substrate DNA used in cleav-
age experiments (for example, Fig. 1d) was generated by PCR using the 
pBR322-based vectors as template, purified by agarose gel electrophoresis and 
diluted to 100 nM concentration as a working stock. Unmutated TIR sequences 
are shown in Extended Data Fig. 5c. Unmutated RSS sequences are: 12RSS, 
5′-CACAGTGGTAGTAGGCTGTACAAAAACC; 23RSS, 5′-CACAGTGGTAGTA 
CTCCACTGTCTGGCTGTACAAAAACC. The 3′TIR and 5′TIR DNA sub-
strates, intact or nicked, used in SEC and for synaptic complex purification 
were assembled by annealing two complementary oligonucleotides: 3′TIR  
oligonucleotide sequence, 5′-CTTGGCAGCGCGCTGCACTATGATACTTAC 
GCTATACCCAGCAGTGTCTGGTCGCCATCTTG; 5′TIR oligonucleotide 
sequence, 5′-AACTTAGTACATACGCACTATGAAAACTTACGTGTGCATA
AGGTCGGCGGCCATCTTG.
In vitro DNA cleavage. Wild-type BbRAGL or RAG proteins (25 nM final con-
centration of each protein), substrate DNA (final concentration 10 nM) and  
175 ng His6–hHMGB1 were incubated in reaction buffer (25 mM HOPS, pH7.0, 
50 mM KCl, 2 mM DTT, 1.5 mM MgCl2; 16 μl final reaction volume) at 37 °C for  

1 h or for the indicated time period. For reactions with chimeric proteins contain-
ing the RAG1 catalytic core, the final concentration of each protein was 50 nM. For 
reactions with chimeric proteins containing the BbRAG1L catalytic core, the final 
concentration of each protein was 50 nM, the Mg2+ concentration was 5 mM and 
reaction time was 2 h. In these experiments, control reactions for each experiment 
used the same conditions as the reactions with the chimeric proteins. Reactions 
were stopped by adding 1.25 μl 2.5% SDS, 5 μl proteinase K (150 μg/ml) and 2 μl 
0.5 M EDTA followed by incubation at 55 °C for at least 3 h. Samples were briefly 
centrifuged and the supernatant mixed with 1.7 μl 80% glycerol and loaded on a 
non-denaturing 1× TBE (Tris-borate-EDTA buffer) 6% polyacrylamide gel. After 
1 h electrophoresis at 100 V, gels were stained with SYBR GOLD in 1× TBE buffer 
for 20 min and imaged using a PharosFX Plus (Bio-Rad).
Confirmation of intramolecular transposition band. The slow mobil-
ity band (as in Fig. 5d, arrow) was excised and DNA purified and sub-
ject to inverse PCR using primers F and R. The major PCR product band 
(Extended Data Fig. 7a, arrow) was excised and the DNA purified, cloned 
and sequenced. Inversion circle transposition products were identified 
as  previously described18. F: TATTATGAGGCCCTTTCGTCTTC; R: 
CGCCTATTTTTATAGGTTAATGTCATG.
BbRAGL–3′TIR synaptic complex assembly for cryo-EM. Purified MBP–
BbRAGL complex was mixed with 3′TIR DNA substrate and His6–hHMGB1∆C 
at a ratio of 1:2.5:2.5 in 20 mM HEPES pH7.6, 0.5 mM TCEP, 10 mM CaCl2 and 150 
mM KCl, and incubated at room temperature for 30 min. After incubation, 5% (v/v) 
PreScission Protease was added and the sample was incubated at room temperature 
for 1 h to cleave off the MBP tags. The mixture was loaded on a Superdex 200 
Increase 10/300 GL column and purified by SEC in 20 mM HEPES pH7.6, 0.5 mM  
TCEP, 150 mM KCl and 5 mM Ca(OAc)2. The peak column fractions were col-
lected and concentrated (if necessary) to a protein concentration of ~0.4 mg/ml. 
The sample was immediately used to prepare cryo-EM grids.
Cryo-EM data acquisition. Purified complex (3 μl) was applied to freshly 
glow-discharged C-flat 400 mesh, R2/1 and R1.2/1.3 holey grids for intact DNA 
and nicked DNA complexes, respectively. Grids were blotted for 4 s in 100% 
humidity and plunge frozen in liquid ethane using a Vitrobot Mark 3 (FEI). A 
Titan Krios electron microscope (Janelia Research Campus, HHMI) operated at 
300 kV, with a spherical aberration corrector and a Gatan Image Filter (slit width 
of ~20 eV), was used to acquire images with a K2 Summit direct electron detector 
(Gatan) in super-resolution mode. The image stacks were collected at a nominal 
magnification of 81,000×, corresponding to 0.675 Å per super-resolution pixel, 
at a dose rate of ~10.2 electrons per physical pixel per second. The total exposure 
was 80 and 54 electrons per Å2, fractionated into 50 and 40 frames, for intact DNA 
complex and nicked DNA complex, respectively. All images were acquired in a 
defocus range from –1.0 to –2.5 μm. The statistics of data acquisition are summa-
rized in Extended Data Table 1.
Image processing. A total of 5,164 and 4,429 LZW-compressed TIFF image stacks 
were collected for intact DNA complex and nicked DNA complex, respectively. 
MotionCor2 1.140 was used for beam-induced motion correction and dose weight-
ing. The first two frames were discarded, and the output aligned images were 
binned 2× in Fourier space, resulting in a pixel size of 1.35 Å for further processing. 
The non-dose weighted aligned images were used for contrast transfer function 
estimation by Gctf 1.0641. The dose-weighted images were used for autopicking, 
classification and reconstruction. Roughly 3,000 particles were manually picked, 
followed by a round of 2D classification to generate templates for RELION 1.4 
autopicking. The autopicked particles were subjected to 2D classification in 
RELION-2.142,43 to remove junk particles. Particle coordinates in good classes were 
extracted for further manual inspection such that bad particles and images were 
discarded. A previously published cryo-EM map (Electron Microscopy Data Bank 
code EMD-6488)21 was low-pass filtered to 60 Å to serve as a starting reference 
for multiple rounds of 3D classification in RELION-2.1 without imposing sym-
metry. Good 3D classes were combined and used for gold standard refinement in 
RELION-2.1 with either C1 or C2 symmetry. Resolution estimation was based on 
the Fourier shell correlation cutoff at 0.143 (FSC0.143) between the two half-maps, 
after a soft mask was applied to mask out solvent region (Extended Data Table 1). 
The final maps were corrected for K2 detector modulation and sharpened by their 
corresponding negative B-factors within RELION-2.1. Local resolution variation 
was estimated by the local resolution module in RELION-2.1.
Modelling and refinement. An initial model was obtained by structural profiling 
of cBbRAG1L and BbRAG2L sequence propensities as previously described44–46. 
In brief, separate models of cBbRAG1L (aa 473–1110) and BbRAG2L were built, 
accounting for accessibility, charge, hydropathy, consensus secondary structure, 
consensus intrinsic disorder profiles and fold recognition assessment using 
Discovery Studio software suite 3.0 (Accelrys). The models were refined by remote 
homology techniques starting from mouse RAG1 structural templates in PDB 
3GNA17 for NBD* of BbRAG1L and PDB 4WWX20 for cBbRAG1L and BbRAG2L. 
To eliminate steric conflicts and further minimize energy, these models were iter-
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atively refined until convergence by repeated cycles of Generalized Born simu-
lated annealing molecular dynamics for implicit solvent using NAMD 2.12 with 
CHARMM36 force field47 followed by model assessment of the global distance 
test total score (GDT_TS) with QA-RecombineIT48 and local loop remodelling in 
regions showing the highest divergence. Annealing simulations were performed 
with harmonic restraints on the backbone protein atom positions in regions of 
regular secondary structure, while irregular loop regions were left to move freely. 
This brought the cBbRAG1L and BbRAG2L models to GDT_TS 60 and >67, and 
root mean square deviations of 2.9 Å and 2.3 Å, respectively. Finally, the assembled 
cBbRAG1L or BbRAG2L structure was subjected to molecular dynamics simula-
tion in explicit solvent to confirm robustness and stability and to assess configu-
ration dynamics of cBbRAG1L and BbRAG2L domains relative to one another.

The BbRAG1L (aa 545–1104) and BbRAG2L (aa 1–366) model thus derived was 
flexibly fitted into the C2 symmetrized map of the nicked 3′TIR complex (4.3 Å)  
by molecular dynamics flexible fitting49. The flexibly fitted model was able to 
account for most density, except for BbRAG1L loops 640–650, 704–720, 732–740 
and 1046–1053, and BbRAG2L loops 11–22, 34–49, 67–74, 85–108, 179–190 and 
300–314, which were adjusted and rebuilt in COOT 0.850. The density for loop 
603–630 in BbRAG1L was insufficient for model building. An all-alanine chain was 
built to fit the density for the C-terminal tail (CTT*) of BbRAG1L (1105–1125). 
The DNA chains from the previously published model (PDB 3JBY)21 were fit into 
the map and then changed to the correct DNA sequence in COOT 0.8. The model 
was adjusted in COOT 0.8 manually with iterative cycles of automatic rebuilding 
using the Rosetta FastRelax protocol51. The model was further refined using the 
phenix.real_space_refine module in PHENIX with secondary structure restraints 
and Ramachandran restraints52. The final model was validated using MolProbity53 
and EMringer54 (Extended Data Table 1). All molecular representations were gen-
erated in PyMol (https://www.pymol.org) and Chimera55.
In vitro transposition assay. The in vitro intermolecular transposition reaction 
(Extended Data Fig. 7b) was performed as described in ‘In vitro DNA cleavage’. 
The 12/23RSS substrate was replaced by 10 nM linear donor fragment with tet-
racycline-resistant marker and 10 nM pECFP-1 target plasmid. The final con-
centrations of RAG protein, Mg2+ and DTT were 50 nM, 1.5 mM and 2 mM, 
respectively. After proteinase K digestion, DNA was ethanol-precipitated. DNA 
(50 ng) was transformed into electrocompetent MC1061 bacterial cells that were 
spread onto plates containing kanamycin or tetracycline–kanamycin–streptomy-
cin. Transposition efficiency was calculated by dividing the number of colonies 
obtained on double-antibiotic plates by the number of colonies obtained on the 
kanamycin-alone plate10,18.
In vivo plasmid-to-plasmid transposition assay. The in vivo plasmid-to-plas-
mid transposition assay (Extended Data Fig. 8a) was performed as previ-
ously described12. In brief, 293T cells were transfected with 4 µg each of the 
pEBB-RAG1 or mutant and pTT5M-RAG2 truncations or pEBB-FL RAG2, 6 µg 
donor plasmid (pTetRSS), and 10 µg target plasmid (pECFP-1) using polyethyl-
enimine. The medium was changed 24 h after transfection and cells were collected 
after 48 h. Plasmid DNA was precipitated and 300 ng DNA was transformed into 
electrocompetent MC1061 bacterial cells, which were plated onto kanamycin or 
kanamycin–tetracycline–streptomycin (KTS) plates. For each protein combination 
assayed in Fig. 5f, g, plasmids from 30 colonies (except for very low-efficiency 
reactions) from KTS plates were sequenced to determine whether they contained 
a bone fide transposition event (3–7 bp target site duplication (TSD)). Total trans-
position efficiency was calculated as described under in vitro transposition assay 
and a corrected value was calculated from the fraction of plasmids that contained 
a transposition event.
Western blotting. Cells were collected 48 h after transfection of protein expres-
sion vectors, resuspended in lysis buffer (50 mM Tris, pH 7.5; 150 mM NaCl; 1% 
N-P40; cocktail protease inhibitor) on ice, and further disrupted by sonication. 
After centrifugation to remove insoluble debris, samples were mixed with loading 
buffer, subjected to sodium dodecyl sulfate polyacrylamide gel electrophoresis 
(SDS–PAGE) and transferred to a PVDF membrane, then incubated separately 
with anti-RAG156, anti-RAG256 and mouse monoclonal anti-β-actin (Sigma 
#A1978) antibodies.
In vivo recombination assay. RAG or BbRAGL expression vectors (1 μg) were 
co-transfected with 2 μg of pCJGFP32 or pTIRG810, respectively, into expi293F 
cells using polyethylenimine (DNA:PEI ratio of 1:3). Cells were collected 72 h 
post-transfection, washed twice with PBS containing 1% FBS and stained with 
DAPI (4′,6-diamidino-2-phenylindole), and the percentage of live cells expressing 
GFP was determined by flow cytometry as shown in Supplementary Data 2.
In vivo plasmid-to-genome transposition assay. The in vivo plasmid-to-genome 
transposition assay (Extended Data Fig. 9a) was performed by transfecting 293T 
cells with 4 µg each of pEBB-RAG1, pEBB-RAG1(E649V/R848M) or empty vec-
tor and pTT5M-RAG2(1–350), and 6 µg of donor pBSK-12puro2312. Forty-eight 
hours after transfection, 5 × 106 cells were split into medium containing 0.8 µg/ml  
puromycin. After 2–3 weeks of culture, colonies (many hundreds from each 

experiment; colony formation was dependent on inclusion of the donor plasmid) 
were digested with trypsin, pooled and re-seeded into new medium containing 
puromycin and cultured further to obtain sufficient cells. For each experiment, 
107 cells were collected and the genomic DNA was precipitated. Transposition 
insertion targets from three independent experiments (no RAG1, wild-type RAG1 
or RAG1(E649V/R848M)) were amplified using 12RSS and 23RSS linear amplifi-
cation (LAM)-PCR primers with six different barcodes (12v, 23v, 12wt, 23wt, 12m, 
23m) as previously described57. Equal amounts of LAM-PCR product from the 
six groups were mixed and diluted as the library for high-throughput sequencing.

LAM-PCR primers: 12RSS, 5′-biotin-ctttattgaggcttaagcagtgggttc; 23RSS, 
5′-biotin-actgacactcgacctcgacaggattg; nested-PCR primers: 12RSS, 5′-acactct-
ttccctacacgacgctcttccgatctXXXXXXgcaaaaagcagatcttattttcgtt; 23RSS: 5′-acactct-
ttccctacacgacgctcttccgatctXXXXXXcttatcatgtctggatcgctttatatacg, where XXXXX 
represents the barcode.
High-throughput sequencing and data analysis. High-throughput sequencing 
was performed on an Illumina NextSeq 500. Cutadapt version 1.16 was used to 
identify barcodes with the adaptor-matching error rate set to allow one mismatch 
in a 7–8-bp barcode. We successfully matched 95.9% of reads to a barcode and 
unmatched reads were discarded. Next, cutadapt was used to trim the barcode 
sequences, primer sequences, and 12RSS and 23RSS sequences. The resulting 
trimmed sequencing data contained only vector sequence or genomic DNA 
sequence from transposition events and other random integration events. Overall, 
60% of barcoded sequencing reads contained identifiable RSS sequences and 
other reads were discarded. Trimmed sequences were aligned to human genome 
GRCh38 using Bowtie2 (version 2.2.9) using ‘very sensitive’ end-to-end align-
ment mode. High-quality alignments (MAPQ ≥ 30; identified with Samtools 1.5) 
were converted to bed intervals using the bedtools bamToBed utility (bedtools 
version 2.27.1). Overlapping same-stranded events were merged for each of the 
six libraries. Bone fide transposition events give rise to 12RSS- and 23RSS-flanking 
genomic sequences that mapped to the same site in the genome but in opposite 
directions and with short overlaps (the target site duplication), a signature that was 
readily distinguished from random integration of the donor plasmid or excised 
RSS fragments (Extended Data Fig. 9b). To accomplish this, Bedtools intersect was 
used to identify loci at which corresponding 12RSS and 23RSS libraries showed 
evidence of transposition events on opposite strands. All intersecting intervals 
with a 3–7-bp overlap were judged to be transposition events. Gene, exon and 
transcription start site (TSS) definitions were downloaded from Ensembl gene v93, 
dataset Human genes (GRCh38.p12). Active TSSs and active genes or exons were 
defined based on H3K4me3 (experiment ENCSR000DTU) and H3K36me3 (exper-
iment ENCSR910LIE) chromatin immunoprecipitation with sequencing datasets, 
respectively, from HEK293 cells from ENCODE (https://www.encodeproject.org).
Statistics and reproducibility. DNA cleavage experiments were typically per-
formed three or more times. Exceptions are Figs. 3i, 4i, Extended Data Fig. 6a, c, f 
(lanes 10 and 11), all n = 2. Statistical analyses were performed using a two-tailed 
t-test (for example, Fig. 5e–g) or a one-tailed Fisher’s exact test (Fig. 5i).
Reporting summary. Further information on research design is available in 
the Nature Research Reporting Summary linked to this paper.

Data availability
The model of the cBbRAGL-nicked 3′TIR synaptic complex has been deposited in 
the PDB with accession code 6B40. The cryo-EM maps of cBbRAGL in complex 
with intact or nicked 3′TIRs have been deposited in Electron Microscopy DataBank 
with accession codes EMD-7043, -7044, -7045 and -7046. High-throughput DNA 
sequence data to identify transposition events in the human genome have been 
deposited in the NCBI Sequence Read Archive with accession codes SRR8430227–
SRR8430233 (project PRJNA514369).
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Extended Data Fig. 1 | ProtoRAG transposon and analysis of the 
BbRAG1L NBD* domain. a, Schematic of the ProtoRAG transposon 
and, below it, the jawed-vertebrate RAG locus and prototypical antigen 
receptor gene (IGH). b, Schematic of full-length and truncated BbRAG1L 
proteins (top), and cleavage reactions performed with those proteins 
(plus BbRAG2L) and TIR substrates, as indicated above and below the 
lanes. Core BbRAG1L (aa 468–1136) retains the cleavage pattern of full-
length BbRAG1L, whereas full-length BbRAG1L exhibits strong single 

TIR cleavage (lanes 6, 7). Closed and open arrowheads, single 5′TIR 
and single 3′TIR cleavage products, respectively. For gel source data, 
see Supplementary Fig. 1. c, Sequence alignment of BbRAG1L NBD* 
with RAG1 NBD showing divergent sequences with similar predicted 
secondary structure elements (α-helices 1, 2 and 3). d, SEC-multiple 
angle light scattering (SEC-MALS) analysis of the purified NBD* protein, 
indicating that the protein is a dimer in solution.
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Extended Data Fig. 2 | Biochemical properties and cryo-EM structure 
of cBbRAGL–3′TIR synaptic complexes. a, SEC-MALS of MBP–
cBbRAGL, which indicates that the complex is a heterotetramer with two 
subunits each of cBbRAG1L and BbRAG2L. b, c, SEC profiles of cBbRAGL 
incubated with intact (b) or nicked (c) 3′TIR, 5′TIR or 3′/5′TIRs showing 
resolution of protein–DNA complex from free DNA. Gels display the 
components of pooled column fractions containing the protein–DNA 
complex. d, Representative 2D class averages of cryo-EM particles of 
cBbRAGL bound to intact or nicked 3′TIRs. e, Left, FSC curves of the 
half maps from gold standard refinements of the cBbRAGL–nicked 3′TIR 
complex with no symmetry applied (blue) and the cBbRAGL–intact 
3′TIR complex with no symmetry applied (red) and with C2 symmetry 
applied (green). Right, FSC curves of the gold standard refinement of 
cBbRAGL–nicked 3′TIR complex with C2 symmetry applied (blue) 
and of the C2 symmetrized map and model (green). Resolutions of 
the maps are read by the cutoff values at FSC = 0.143. f, Colour-coded 
local-resolution estimation of the C2 symmetrized map of cBbRAGL in 

complex with nicked 3′TIR, viewed from a perspective similar (with a 
30° rotation) to that of g. Resolution is, in general, better for cBbRAG1L 
than BbRAG2L. g, h, Cryo-EM maps of cBbRAGL bound to intact 3′TIRs 
(5.3 Å overall resolution; g) or nicked 3′TIRs (5.0 Å overall resolution; 
h). One BbRAG1L subunit (grey) has been rendered partially transparent 
to allow visualization of DNAs inside the protein. Continuous DNA 
density running through the protein core is visible with nicked but not 
intact TIRs, which suggests that the DNA in the vicinity of the active site 
becomes more rigidly constrained upon nicking. This is notable in light 
of the recent finding that DNA in the RAG active site melts and swivels 
in preparation for nicking23. Clear differences between the two DNAs 
are visible in the bottom half of the structures, with 3′TIR-a (orange) 
protruding below the protein and density for 3′TIR-b (red) dissipating 
before the DNA emerges from the protein core. This argues that the two 
identical DNA molecules are engaged differently by cBbRAGL, with one 
(3′TIR-b) less rigidly constrained by its interactions with protein.
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Extended Data Fig. 3 | Structural features of cBbRAGL. a, Comparison 
of the models of cBbRAGL and cRAG (PDB 5ZDZ) bound to nicked 
DNA but with DNA removed, illustrating the absence of NBD* from 
the cBbRAGL structure. NBD is a dimer that can pivot on a flexible 
hinge to accommodate the different spacer lengths of 12RSS and 
23RSS, providing a structural explanation for the 12/23 rule20–22,58. 
We speculate that NBD*, HMGB1 and distal TIR sequences constitute 
a flexible domain located below the main complex, by analogy with 
RAG–RSS complexes. b, Superimposition of cBbRAGL–nicked 3′TIR 
synaptic complex with RAG–nicked RSS synaptic complex (PDB 5ZDZ). 
c, BbRAG2L adopts a doughnut-shaped structure consistent with that of a 
six-bladed β-propeller. Because of low resolution, some elements cannot 
be unambiguously modelled as β-strands. Putative β-propellers I–VI are 
labelled, as are the N and C termini of the protein, showing that—as with 
RAG2—propeller I is composed of both N- and C-terminal sequences.  
d, Colour-coded linear diagram of cBbRAG1L subdomains (top) and 
cartoon of the BbRAG1L dimer (bottom) with the subdomains of one 
subunit colour-coded as in the linear diagram. The other subunit is grey 

except for the preR subdomain. Stars indicate a gap in the BbRAG1L 
model that spans aa 603–630. Nomenclature and figure layout as in 
ref. 20. DDBD, dimerization and DNA binding domain; PreR, pre-
RNase H domain; RNH, RNase H domain; ZnC2 and ZnH2, domains 
that contribute two cysteines and two histidines, respectively, for zinc 
coordination; CTD, C-terminal domain; CTT*, C-terminal tail.  
e, Superimposition of cryo-EM map on the model of the nicked 3′TIR 
in the vicinity of the flipped bases near the site of nicking. f, g, Three-
dimensional classes of cryo-EM maps of cBbRAGL bound to intact (f) or 
nicked (g) 3′TIRs (DNA omitted). One class is enlarged and shown from 
two vantage points below. The arrow points to the cleft that narrows in the 
open-to-closed transition. With intact DNA, three distinct 3D classes are 
distinguishable that vary in the degree of closure of the two arms of the V. 
h, Superimposition of three forms of cBbRAGL illustrating the movement 
of a 3′TIR and BbRAG2L subunit (colour-coded as in e, f) that takes place 
during the open-to-closed transition. One cBbRAG1L–2L dimer has been 
aligned and movement is visualized in the other dimer.
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Extended Data Fig. 4 | Protein–DNA interactions in the cBbRAGL–
nicked 3′TIR synaptic complex. a, Schematic diagram of the detailed 
interactions between BbRAG1L and nicked 3′TIR DNA. Bold underlined 
text, main-chain interactions; regular text, side-chain interactions; purple 
text, interactions involving BbRAG1L subunit a (defined as the subunit 
with an active site that engages the TIR depicted); cyan text, interactions 
involving symmetric BbRAG1L subunit b. BbRAG2L–DNA interactions 

could not be unambiguously assigned and are not depicted.  
b, c, Orthogonal views of the nicked 3′TIR–BbRAG1L subunit a 
interaction (b) and the nicked RSS–RAG1 subunit a interaction (c). 
Protein electrostatic surface potential is indicated with blue (positive 
charge) and red (negative charge) using the scale (KT/e) below d, e. d, 
BbRAG1L subunit b–nicked 3′TIR interaction. e, RAG1 subunit b–nicked 
RSS interaction.
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Extended Data Fig. 5 | CTT, CTT* and mutational analysis of ProtoRAG 
TIRs. a, Superimposition showing CTT* extending from a structurally 
conserved region at the C terminus of the catalytic core regions of mouse 
RAG1 (mRAG1), zebrafish RAG1 (zRAG1) and BbRAG1L. b, Sequence 
alignment of CTT from six vertebrate RAG1 proteins. Species name 
abbreviations used in this paper: Mm, Mus musculus (mouse); Hs, Homo 
sapiens (human); Gg, Gallus gallus (chicken); Xl, Xenopus tropicalis (frog); 
Dr, Danio rerio (zebrafish); Bb, Branchiostoma belcheri (amphioxus); Pf, 
Ptychodera flava (acorn worm); Sp, Strongylocentrotus purpuratus (purple 
sea urchin); Af, Asterias forbesi (sea star); Hv, Hydra vulgaris (hydra); 
Rn, Rattus norvegicus (rat). c, Schematic indicating sub-regions of TIRs. 
Region 1 contains the heptamer and one additional bp, which in Fig. 1a 

and throughout the paper is defined as part of TR2. Otherwise, region 
2 (broken up into 2a and 2b for the 5′TIR) corresponds to TR2. Poorly 
conserved regions 3 and 4 separate TR2 from a distal conserved 9-bp 
element (region 5). d–g, Cleavage of substrates containing a single 5′TIR 
(d, e) or a single 3′TIR (f, g), either intact (WT) or with the indicated 
region scrambled, by cBbRAGL (d, f) or the ΔNBD* cBbRAGL complex 
(e, g). Closed and open arrowheads, 5′TIR and 3′TIR cleavage products, 
respectively. Region 5 is completely dispensable for cleavage, and regions 
3 and 4 contribute modestly to 3′TIR—but not 5′TIR—cleavage. Upon 
deletion of NBD* from cBbRAG1L, 3′TIR cleavage loses all dependency 
on regions 3 and 4, consistent with the possibility that NBD* engages in 
functionally important interactions with regions 3 and 4 of the 3′TIR.
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Extended Data Fig. 6 | Activities of chimeric RAG1–BbRAG1L proteins 
and residues that influence coupled cleavage. a, b, Cleavage by NBD–
CC* is dependent on the length of the spacer between the TIR heptamer 
and the RSS nonamer. Substrates depicted schematically above the gel 
images. In a, the substrates contain a single target based on T1 (Fig. 3b), 
the spacer of which ranges in length from 10 to 14 bp. In b, the substrate 
contains target T1 and a partner target based on T2 (Fig. 3b), the spacer of 
which ranges in length from 20 to 25 bp. Dark arrowheads, T1 cleavage 
products; open arrowheads, T2 cleavage products. c, d, Cleavage reactions 
using the NBD*–CC–CTT* and CC–CTT* proteins and T3 and T4 
substrates (all depicted schematically in Fig. 3c), as indicated above the 
lanes. T3* and T4*, T3 and T4 targets with a C-to-A mutation of heptamer 
position 1 that renders the target uncleavable; [T4/T4]H+TR2 and [T3/
T3]H+TR2, substrates in which both targets have had all substrate 
sequences except the heptamer and TR2 deleted. Asterisks as in Fig. 2g. 
e, Cartoon depicting differences in the major protein–DNA interactions 
of BbRAGL and RAG. f, Superposition of RAG1 and BbRAG1L in the 
region containing Glu649 and Ser963 in complexes bound to nicked 
DNA substrates, illustrating the similarity of positioning of the active site 

residues Glu962 and Glu1063 and flanking residues Asn961 and Asn1062. 
h, RAG1 Asn961 and BbRAG1L Asn1062 have the potential to participate 
in hydrogen-bond networks after nicking and could thereby stabilize 
the hairpin-competent configuration of the enzyme. This is notable in 
light of the fact that mutant RAG1(N961A) displays enhanced coupled 
cleavage compared to wild-type RAG1. i, Cleavage reactions using wild-
type and mutant cBbRAG1L proteins (with BbRAG2L) and substrates 
containing one or two TIRs as indicated above and below the lanes (left). 
cBbRAG1L(V751E), but not cBbRAG1L(A1064S), reduces uncoupled 
single 3′TIR cleavage (lower black asterisk, lane 2; reduction also seen 
in lane 8) and single 5′TIR cleavage (seen most clearly in lane 5). The 
strong reduction in cleavage seen with the BbRAG1L(V751E/A1064S) 
double mutant suggests the possibility that hydrogen bonding between 
these two residues holds the active site in an inactive configuration. Right, 
quantification of uncoupled cleavage as the ratio of the intensity of the 
3′TIR single cleavage band (lower black asterisk) to that of the double 
cleavage band (red asterisk) as in lanes 1–3. Mean ± s.e.m. Two-tailed  
t-test: **P < 0.01, compared to wild-type cBbRAG1L. ns, not significant.
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Extended Data Fig. 7 | In vitro transposition by wild-type and mutant 
RAG proteins. a, Schematic of intramolecular transposition. If the 3′ OH 
nucleophiles attack the strand on which they are located, the products 
are two deletion circles (top), but if they attack the opposite strand, a 
single inversion circle product is generated (bottom). Staggered attack 
on the target DNA backbone yields single-stranded gaps in the products, 
represented as five short vertical lines. b, Inverse PCR reaction to amplify 
inversion circles from purified intramolecular transposition product 
as in Fig. 5d, third lane. The band indicated with an arrow was excised, 
cloned and sequenced, yielding sites at which intramolecular transposition 
occurred to yield inversion circles, indicated in the map of the excised 
12/23RSS central fragment (below). Half arrows indicate approximate 
locations of PCR primers. The location of deletion circle joints detected 
by sequencing are not indicated. c, Schematic of intermolecular in 
vitro transposition assay. An RSS-flanked Tet gene is mobilized from a 
linear donor by RAG-mediated DNA cleavage and can transpose into a 
target plasmid, which is detected after bacterial transformation by the 
appearance of colonies on Kan/Tet/Str (KTS) plates (streptomycin (str) is 
not relevant in this assay). d, In vitro DNA cleavage and intramolecular 
transposition by position 848-mutant cRAG1 (with RAG2(1–383)). 
Increased transposition compared to wild-type cRAG1 is revealed by 
diminished intensity of the double cleavage band and increased intensity 
of the slow-migrating intramolecular inversion circle transposition 
product band (red arrow). The intensity of the inversion circle band 
underestimates the efficiency of transposition because deletion circle 

transposition products—which are of heterogeneous size, and hence 
not visible as a discrete band—are also produced18. e, Quantification 
of intramolecular transposition efficiency from three independent 
experiments as in d, measured by ratio of double cleavage band to 23RSS 
cleavage band (the latter serving as an internal control for the total amount 
of cleavage). The ratio decreases as intramolecular transposition increases 
in efficiency, consuming the double cleavage band. Mean, with data range 
indicated by box. Two tailed t-test; P values are indicated. f, Distribution 
of transposition target site duplication lengths determined by sequencing 
of plasmid transposition products or from high-throughput sequencing 
of plasmid-to-genome transposition products (Extended Data Fig. 9d), as 
indicated above the bars. The RAG1 protein used is indicated below the 
bars. In vitro reactions as in Fig. 5e using RAG2(1–383); in vivo plasmid 
target reactions as in Fig. 5g using RAG2(1–350); genome transposition 
products generated using RAG2(1–350). In a small fraction of plasmids, 
sequencing revealed deletions at the site of insertion of the RSSs (red; 
deletion). g, In vitro cleavage and intramolecular transposition reactions 
using RAG2(1–352) and RAG2(1–383) (as indicated above the lanes) and 
wild-type or mutant cRAG1 (as indicated below the lanes). Transposition 
is readily detected with both forms of RAG2 and is increased by the 
RAG1(R848M) mutation. h, In vitro intermolecular transposition assays 
using RAG2(1–383) and RAG2(1–352) and wild-type or mutant cRAG1 
(as indicated below the lanes). Deleting the RAG2 acidic hinge does not 
increase the efficiency of intermolecular transposition in vitro.
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Extended Data Fig. 8 | In vivo transposition by RAG and BbRAGL 
proteins. a, Schematic of plasmid-to-plasmid in vivo transposition assay. 
An RSS-flanked Tet gene is mobilized from a donor plasmid by RAG-
mediated DNA cleavage and can transpose into a target plasmid, which 
is detected after bacterial transformation by the appearance of colonies 
on KTS plates (streptomycin (str) reduces background in the assay by 
selecting against bacteria containing the rpsL gene, present in the donor 
plasmid). b, Schematic of in vivo GFP fluorescence recombination 
assay, used to generate data in c (right), e (right) and g. Excision of the 
polyadenylation sequence (poly-A) together with its flanking RSSs or 
TIRs (triangles) by RAG or BbRAGL and resealing of the plasmid allows 
expression of GFP. c, In vivo transposition (left) and recombination (right) 
activity in HEK293T cells of wild-type BbRAG1L and BbRAG1L(M949R) 
(together with BbRAG2L). Mean ± s.e.m. Two-tailed t-test: ***P < 0.005, 
compared to wild-type BbRAG1L. d, In vivo transposition activity assayed 
in human colon cancer cell line HCT116 with full-length RAG1(R848M/
E649V) and either RAG2(1–350) or RAG2(1–383). As in HEK293T 

cells, transposition is strongly inhibited by the RAG2 acidic hinge. 
Mean ± s.e.m. e, In vivo transposition (left) and recombination (right) 
activity in HEK293T cells of human wild-type RAG1 and RAG1(R851M) 
with different forms of human RAG2, beginning at amino acid 1 and 
ending with the amino acid indicated below the bars. Mean ± s.e.m. 
Two-tailed t-test: ***P < 0.005; ****P < 0.001 compared to wild-type 
human RAG1. f, g, Protein expression (f) and recombination activity 
(g) in HEK293T cells of wild-type and mutant mouse RAG1 and RAG2 
proteins used in the in vivo transposition assays. The data show that the 
large increases in transposition activity observed with some proteins 
(for example, RAG2(1–350), RAG2(1–352), and RAG1(R848M)) are not 
due to large increases in protein expression or cleavage/recombination 
activity. h, i, In vivo transposition activity assayed in HEK293T cells with 
full length RAG1(R848M) (h) or RAG1(R848M/E649V) (i) and various 
forms of RAG2, beginning at amino acid 1 and ending with the amino acid 
indicated below the bars. FL, full-length RAG2.
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Extended Data Fig. 9 | Transposition into the human genome by mutant 
RAG proteins. a, Schematic of plasmid-to-genome in vivo transposition 
assay. An RSS-flanked Puro expression cassette is mobilized from a 
plasmid donor by RAG-mediated DNA cleavage and can transpose into 
the genome, which is detected by selection with puromycin and high-
throughput sequencing. b, Schematic illustrating detection of bone fide 
transposition events into the genome by LAM-PCR and high-throughput 
sequencing. LAM-PCR is performed on genomic DNA with biotinylated 
primers (half arrows) that extend into the DNA flanking either the 12RSS 
or 23RSS; thereafter, independent libraries are prepared and sequenced 
for the 12RSS and 23RSS flanks. If the donor plasmid randomly inserts 
into genome (i), then the RSS is flanked by donor plasmid sequences. If 
the RSS fragment is cleaved at one or both RSSs and randomly inserted 
into genome (ii), then a match with an appropriate sequence duplication 
(indicative of a TSD) will not be found between the 12RSS and 23RSS 
libraries. Finally, if the RSS fragment is inserted into the genome by 
transposition (iii), a match with a 3–7-bp TSD will be found in the 12RSS 
and 23RSS libraries. c, Tissue culture plates stained with crystal violet 
showing puromycin-resistant colonies for experiments using RAG2(1–
350) and either wild-type RAG1 or RAG1(R848M/E649V). Colony 
numbers increase about twofold with the mutant RAG1 protein but many 

colonies are seen with wild-type RAG1 owing to random integration of 
the donor plasmid. Essentially no colonies are seen if the donor plasmid 
is omitted (first column of plates) d, Summary of sequence data from 
the plasmid-to-genome transposition experiments. For each of the six 
libraries, column 1 shows the total number of reads with a barcode and 
RSS, columns 2 and 3 show a breakdown of number of reads in which 
RSS flanking sequences map to the human genome or the donor plasmid 
(a small fraction of reads do map to either genome or plasmid owing to 
poor read quality), column 4 shows the number of unique reads that map 
to the genome (after elimination of duplicates) and column 5 shows the 
number of bone fide transposition events detected. e, Rainfall circos plot 
of transposition events into chromosomes of HEK293T cells. f–h, Genome 
features of transposon integration sites mediated by RAG1(R848M/
E649V) and RAG2(1–350). f, Number (per cent) of transposition events 
into the genome features indicated. One-tailed Fisher’s exact test was used 
to determine whether the frequency of transposition events was greater 
than that expected by chance: genes (P = 9 × 10–30); protein-coding genes 
(P = 5 × 10–35); exons (P = 6 × 10–86); protein-coding exons (P = 4 × 10–82)  
and within 2 kb of a TSS (P = 5 × 10–180). g, h, Meta-analysis of 
integration sites within gene bodies (g) and flanking TSSs (h).
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Extended Data Fig. 10 | Model of RAG evolution in metazoans. Steps 
leading from the ancestral Transib transposon, consisting of a RAG1-like 
ORF flanked by RSS-like TIRs34, to the RAG recombinase and split antigen 
receptor genes of jawed vertebrates. I, capture of a RAG2-like ORF by a 
Transib transposon to generate the ancestral RAG transposon in an early 
deuterostome; II, key events in the evolution of RAG1, RAG2 and antigen 
receptor genes of jawed vertebrates: A, insertion of the RAG transposon 
into the exon of a gene encoding an immunoglobulin-domain receptor 
protein to generate the ancestral antigen receptor gene; B, loss of CTT* 
and acquisition of Glu649 and Ser963 by RAG1 facilitated evolution of 

the 12/23 rule and coupled cleavage, respectively, while acquisition of 
RAG1 Arg848 and the RAG2 acidic hinge powerfully suppressed RAG 
transposition activity. The order of events depicted in II is not known. 
RAG-related elements, if found in members of a given lineage, are 
indicated at right, as is the presence of the CTT* domain. Protostome 
lineages have been collapsed into a single branch. While vertical 
transmission is consistent with the distribution of RAG1 and RAG2 
transposon and recombinase elements in deuterostomes11, horizontal 
transmission might have contributed to the spread of Transib elements.
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Extended Data Table 1 | Cryo-EM data collection, refinement and validation statistics

Summary of relevant parameters used during cryo-EM data collection and processing. Refinement and validation statistics are provided for the molecular model of the BbRAGL–3′TIR synaptic complex 
with nicked DNA with C2 symmetry.
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the expected molecular weight by western blot, a finding also reported on the manufacturer's website in multiple mouse and 
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obtained from Eric Hendrickson, University of Minnesota.
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Methodology

Sample preparation Expi293F cells were harvested 72 h post-transfection, washed twice with PBS containing 1% FBS, stained with DAPI (4ʹ,6-
diamidino-2-phenylindole).

Instrument Stratedigm STD-13L

Software FlowJo 10.3
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Gating strategy Negative gate established in cells transfected with GFP reporter vector but no RAG or BbRAGL expression vectors; see 
Supplementary Data 2.

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.


	Transposon molecular domestication and the evolution of the RAG recombinase

	Uncoupled DNA cleavage by ProtoRAG

	Structure of the ProtoRAG transposase

	A novel ProtoRAG DNA-binding domain

	Modular domain function and the 12/23 rule

	Residues that control coupled cleavage

	Two-tiered control of RAG transposition

	Molecular domestication of the RAG transposon

	Online content

	Acknowledgements
	Reviewer information
	Fig. 1 Uncoupled DNA cleavage by BbRAGL.
	Fig. 2 Cryo-EM structure of cBbRAGL-nicked 3′TIR complex.
	Fig. 3 DNA cleavage properties of chimeric RAG1–BbRAG1L proteins.
	Fig. 4 Residues that control coupled cleavage.
	Fig. 5 Reawakening the RAG transposon in vivo.
	Extended Data Fig. 1 ProtoRAG transposon and analysis of the BbRAG1L NBD* domain.
	Extended Data Fig. 2 Biochemical properties and cryo-EM structure of cBbRAGL–3′TIR synaptic complexes.
	Extended Data Fig. 3 Structural features of cBbRAGL.
	Extended Data Fig. 4 Protein–DNA interactions in the cBbRAGL–nicked 3′TIR synaptic complex.
	Extended Data Fig. 5 CTT, CTT* and mutational analysis of ProtoRAG TIRs.
	Extended Data Fig. 6 Activities of chimeric RAG1–BbRAG1L proteins and residues that influence coupled cleavage.
	Extended Data Fig. 7 In vitro transposition by wild-type and mutant RAG proteins.
	Extended Data Fig. 8 In vivo transposition by RAG and BbRAGL proteins.
	Extended Data Fig. 9 Transposition into the human genome by mutant RAG proteins.
	Extended Data Fig. 10 Model of RAG evolution in metazoans.
	Extended Data Table 1 Cryo-EM data collection, refinement and validation statistics.




