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One sentence summary: Functional transcripts indicate autotrophic CO2 assimilation through the reductive pentose phosphate cycle, heterotrophic
anaplerotic CO2 assimilation, and aerobic CO oxidation by phylogenetically diverse bacteria in three sympatric sponges T. swinhoei, P. simplex and Ph.
fusca.
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ABSTRACT

Bacteria are the dominant symbionts in sponges and are regarded as important contributors to ocean nutrient cycling;
however, their roles in carbon utilization in sponge holobionts are seldom identified. Here, the in situ active bacteria and
their CO, assimilation and CO oxidation functions in sponges Theonella swinhoei, Plakortis simplex and Phakellia fusca were
evaluated using the analysis of functional gene transcripts. Phylogenetically diverse bacteria belonging to 16 phyla were
detected by 16S rRNA analysis. Particularly, some of the active bacteria appeared to be sponge-specific or even sponge
species-specific. Transcribed autotrophic CO, assimilation genes rbcL and rbcM, anaplerotic CO, assimilation gene accC and
aerobic CO oxidation gene coxL were uncovered and assigned to a wide variety of bacterial lineages. Some of these carbon
metabolism genes showed specificity to sponge species or different transcriptional activity among the sponge species. This
study uncovered the phylogenetic diversity of transcriptionally active bacteria especially with CO, assimilation or CO
oxidation functions, providing insights into the ecological functions of the sponge-symbiotic bacteria regarding carbon
metabolism.
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INTRODUCTION et al. 2000). Microbes are regarded as the main transformers in
L . . carbon cycling and substantial contributors to the energy flow in
The oceans are a major sink for CO, and CO (Swinnerton, Lin- the ocean (Cotner and Biddanda 2002; Madsen 2011; DeLorenzo

nenbom and Lamontagne 1970; Sabine et al. 2004). Oceanic car-
bon biogeochemical transformation spans a tremendous geo-
graphic range at the bathymetric and latitudinal scales and is
of considerable importance to the global carbon circulation (Cox

etal. 2012). CO, assimilation by microorganisms in marine envi-
ronments is one of the most promising solutions to the predica-
ment of CO, emission and a fundamental means of generating
organic carbon (Hugler and Sievert 2011).
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As an essential component of benthic communities world-
wide and active suspension feeders, marine sponges have a sig-
nificant influence on the nutrient availability in their associate
habitats, such as supporting the nutrient needs for coral reefs
and other organisms (de Goeij et al. 2013; Lesser and Slattery
2013; Pita et al. 2018). Marine sponges are complex holobionts
that accommodate abundant and diverse microbes, including
bacteria, archaea and fungi (Fiore, Jarett and Lesser 2013; Gao
et al. 2014; He et al. 2014; Naim et al. 2014; Jasmin, Anas and
Nair 2015; Morrow, Fiore and Lesser 2016; Thomas et al. 2016;
Webster and Thomas 2016), and may play important ecological
roles in element cycling (Han et al. 2012; de Goeij et al. 2013; Feng
et al. 2016, 2018; Pita et al. 2018). The assimilation of dissolved
inorganic and organic carbon by the sponge-microbe consortia,
along with their filter-feeding abilities, provides sponges with a
suite of nutritional capabilities in their oligotrophic habitats (de
Goeij et al. 2008, 2013). Some symbiotic photoautotrophs may
even provide their sponge hosts with a nutritional benefit and
enhanced scope for growth under high CO, concentrations (Mor-
row et al. 2015).

Microbes can autotrophically assimilate CO, via six path-
ways: the reductive pentose phosphate (rPP) cycle, the reduc-
tive tricarboxylic acid (rTCA) cycle, the reductive acetyl coen-
zyme A (rACA) pathway, the 3-hydroxypropionate (3-HP) bicycle,
the 3-hydroxypropionate/4-hydroxybutyrate (3-HP/4-HB) cycle
and the dicarboxylate/4-hydroxybutyrate cycle (Hugler and Siev-
ert 2011). These metabolic pathways include a variety of pro-
cesses involving alternative energy usage (phototrophic or
chemotrophic) under different conditions (Vacelet et al. 1996;
Hentschel, Usher and Taylor 2006; Taylor et al. 2007; Hoffmann
et al. 2009). Heterotrophic microbes are unable to use CO, as
their only carbon source; however, they have the ability to assim-
ilate CO, in various anaplerotic reactions during biosynthesis
(Hesselsoe et al. 2008). CO oxidation, which produces CO,, is
carried out by a diverse group of aerobic bacteria (King 2003b).
These CO-oxidizing microbes play important roles in the global
CO biogeochemistry and contribute to CO scavenging in their
niches (Moran et al. 2004; Simister et al. 2013).

The functional gene based analysis has improved our knowl-
edge of the roles that marine microbes play in the global
biogeochemical cycles (Ferrera et al. 2015). Genes involved
in CO, assimilation pathways have been identified in sponge
symbionts; for instance, the photoautotrophic rPP pathway
in cyanobacteria Synechococcus spongiarum and Myxosarcina sp.
(Burgsdorf et al. 2015; Yu et al. 2015), the autotrophic 3-HP/4-
HB cycle in archaea Cenarchaeum symbiosum and Nitrosopumilus
sp. LS_AOA (Hallam et al. 2006), the rACA pathway and the
rTCA cycle in Poribacteria sp. (Siegl et al. 2011; Tian et al. 2016).
Genome revelation of the sulfur-oxidizing bacterium Thioalka-
livibrio nitratireducens, identified from the sponge Haliclona cymae-
formis, has illustrated the chemoautotrophic rPP pathway and
versatile heterotrophic metabolic capabilities (Tian et al. 2014).
The symbionts of the sponge Neamphius huxleyi are likely to use
two alternative pathways for CO, assimilation, i.e. the chemoau-
totrophic rPP cycle and the rTCA cycle (Li et al. 2014). Metage-
nomic analysis of the sponge Theonella swinhoei has uncov-
ered the genes of the symbiotic Entotheonella sp. related to the
chemoautotrophic life style employing the rPP pathway, sul-
fur oxidation and reduction, as well as those allowing utiliza-
tion of organic compounds (e.g. chitin, N-acetylglucosamine),
indicating the mixotrophic life style of this bacterial genus
(Liu et al. 2016). The genes involved in CO oxidation have
been found in the uncultured sponge-symbiotic Poribacteria sp.
(Siegl et al. 2011), Rhodospirillaceae (Karimi et al. 2018) and the

metagenome of the sponge Cymbastela concentrica (Thomas et al.
2010). In addition, uncultured chemosynthetic symbionts, such
as ammonia-oxidizing archaea and bacteria, nitrite-oxidizing
bacteria and sulfur-oxidizing bacteria, have been detected in dif-
ferent sponges from various geographic locations by using gene-
targeted sequencing approaches (Hoffmann et al. 2009; Lopez-
Legentil et al. 2010; Mohamed et al. 2010; Nishijima et al. 2010;
Thomas et al. 2010; Han et al. 2012; Ribes et al. 2012; Radax et al.
2012a, 2012b; Han, Li and Zhang 2013; Feng et al. 2016; Jensen
et al. 2016). These investigations indicate the complexity of car-
bon metabolism with a wide variety of pathways operating in
the symbiotic consortium of sponges.

However, most of the present functional evaluation of
sponge microbiota is based on gene analysis at the DNA
level. DNA-based analyses often allow inference with respect
to the metabolic potentials of microbes involved in ecologi-
cal processes (Wang et al. 2013). As a comparison, RNA-based
approaches could give further insights into the active functions
of the microbiota (Feng et al. 2018). For example, transcripts of
genes related to photoautotrophic CO, assimilation through the
rPP cycle or CO oxidation have been explored in the sponges
Stylissa carteri, Geodia barretti, and Xestospongia muta by meta-
transcriptomic analysis (Moitinho-Silva et al. 2014). To date,
comparatively, there is still a lack of comprehensive knowledge
about the phylogenetic diversity of in situ active bacterial lin-
eages that are responsible for CO, assimilation and CO oxidation
in sponge holobionts. In this study, 16S rRNA together with the
transcripts of the functional genes essential for CO, assimilation
and CO oxidation were analyzed to reveal the in situ active bac-
teria with CO, assimilation and CO oxidation functions among
sympatric sponges in the South China Sea.

MATERIALS AND METHODS
Sampling

The sponges T. swinhoei (class Demospongiae, order Tetractinel-
lida, family Theonellidae), Plakortis simplex (class Homosclero-
morpha, order Homosclerophorida, family Plakinidae) and Ph.
fusca (class Demospongiae, order Axinellida, family Axinellidae)
were collected by scuba diving near Yongxing Island (112° 20’
E, 16° 50’ N) in the South China Sea at approximately 10 m
depth from 9:15 to 9:50 am on the 20th of June 2013. These
sponge species were selected because they are abundant and
coexist in the same reef. Samples were transferred underwa-
ter to sealable plastic bags containing seawater, brought to the
boat and stored on ice. Three individuals per sponge species
were sampled. The sponge samples were sliced into 1 cm? pieces
with sterile scalpels and were transferred into 10 volumes of
RNAfixer stabilization solution (YuanPingHao, Beijing, China)
after they had been rinsed three times with sterile artificial sea-
water (Mohamed et al. 2010). In addition, three seawater samples
(2 liters per sample) were collected in the proximity (less than 1
min from the sponges), before the sponges were collected, and
were filtered through 0.22 pm filters (Millipore, Bedford, USA).
The collected sponge and seawater samples were preserved in
RNAfixer stabilization solution. The time between sample acqui-
sition and fixation was no longer than 20 min (Ozturk et al.
2013). RNAfixer-fixed sponge and filtered seawater samples were
stored at —80°C before total RNA and DNA extraction within 2
weeks.
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RNA extraction and cDNA synthesis

RNAfixer-fixed sponge and filtered seawater samples were
ground in liquid nitrogen with a mortar and pestle. RNA was
extracted using the PrepRNA/DNA Mini Kit (Qiagen, Hilden, Ger-
many) following the manufacturer’s instructions. RNase-free
DNase I (Fermentas, Hanover, USA) was used to digest the
residual genomic DNA at 37°C for 60 min. RNA quality and
integrity was checked by gel electrophoresis and by examin-
ing the A260/A280 ratio (ranging from 1.98-2.02) using a Nan-
oDrop spectrophotometer (NanoDrop Technologies, Wilming-
ton, USA). The final RNA concentration and purity were quan-
tified using the Qubit system (Invitrogen, Darmstadt, Germany).
First-strand ¢cDNA synthesis was performed using the Super-
Script First-Strand Synthesis System (Invitrogen, Carlsbad, USA).
Each reaction volume was 10 pl containing 100 ng RNA, 0.5 ul
random hexamers primer (50 ng/pl), 5 ul cDNA Synthesis Mix
and RNase-free water. This reaction was carried out by incubat-
ing at 25°C for 10 min, then at 50°C for 50 min and terminated
at 85°C for 5 min. All cDNA aliquots were stored at —80°C before
polymerase chain reaction (PCR) amplification.

16S rRNA pyrosequencing and phylogenetic analysis

Using cDNA, bacterial 16S rRNA fragments from sponges T.
swinhoei, P. simplex, Ph. fusca and environmental seawater were
amplified and barcoded using Titanium adapter sequences A
(forward primer) and B (reverse primer) for pyrosequencing. A
10-bp barcode sequence was added to the PCR primers to distin-
guish the sequences by source. The primer pair U789F&U1068R
was used to amplify the hypervariable V5-V6 region of bacte-
rial 16S rRNA sequences (Fiore et al. 2015). The PCR mixture con-
tained 0.25 ul of Titanium Taq polymerase (Clontech, Mountain
View, USA), 2.5 ul of Titanium Taq buffer, 0.5 1 dNTPs (Promega,
Madison, USA, 100 mM solution), 0.2 ul of each barcoded primer
(5 uM solution) and 2 1 of cDNA template. The reaction was per-
formed on a Thermocycler (Eppendorf Mastercycler, Wesseling-
Berzdorf, Germany) using the following protocol: initial denat-
uration for 5 min at 95°C, 28 cycles of 95°C for 30 s, 53°C for 30
s and 72°C for 45 s, followed by 10 min at 72°C. The cDNAs of
three individuals for each sponge or seawater sample were PCR-
amplified, and three technical replicates per individual were
used. The PCR products of replicates were pooled together for
pyrosequencing to reduce potential bias amplification (Fenget al.
2016, 2018) (Fig. S1, Supporting Information). PCR products were
assessed by gel electrophoresis (1.5% agarose gel) and purified
with MinElute Gel Extraction Kit (Qiagen). The amplicons were
then quantified by a Qubit 2.0 Fluorometer using a Qubit dsDNA
HS Assay Kit (Invitrogen). A mixture of PCR products was pre-
pared by mixing 200 ng of purified 16S rRNA amplicons from
each sponge or seawater sample and then pyrosequenced on the
ROCHE 454 FLX Titanium platform (Roche, Basel, Switzerland)
at the National Human Genome Centre of China at Shanghai,
China, according to the manufacturer’s manual.

The Mothur platform v.1.36.0 was used for all analyses
according to Schloss et al. (2009). Sequences were aligned to the
data derived from the full-length SILVA alignment distributed by
Mothur. Raw sequences with lengths of less than 200 bp, with
mismatches on the primer or barcode, containing a homopoly-
mer longer than 6 nucleotides, or with a mean quality score
below 25 were discarded. The resulting alignment was then fil-
tered to remove columns that did not contain any information.
Reads were pre-clustered so that any sequences differing by a
single nucleotide were considered to be identical. Pre-clustered
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reads were classified using the Mothur implementation of the
RDP Bayesian classifier using a cutoff of 60% bootstrap support
over 100 iterations. Sequences that were classified as belong-
ing to mitochondria, chloroplasts or archaea, and sequences
that were classified as ‘unknown’ or ‘unclassified’ at the phylum
level were removed from the dataset. Chimeras were identified
using a Mothur-based implementation of Chimera Slayer using
a region-specific version of the Gold database. The remaining
aligned sequences were used to generate a pairwise distance
matrix and clustered into operational taxonomic units (OTUs)
using average-linkage clustering at 97% sequence identity. OTUs
were classified using the Mothur implementation of the RDP
classifier.

Construction of functional gene fragment libraries and
phylogenetic analysis

The cDNA template was used for PCR amplification of the CO,
assimilation genes rbcl and rbcM (encoding the large chain sub-
unit of RuBisCO and the single subunit RuBisCO, respectively,
being essential in the rPP cycle), aclB (encoding ATP citrate lyase
subunit B, which is active in the rTCA cycle), cooS (encoding
the catalytic subunit of anaerobic CO dehydrogenase/Acetyl CoA
synthase, that takes part in the rACA pathway), mcrA (encod-
ing the subunit of malonyl-coenzyme A reductase, that is active
in the 3-HP bicycle), accC (encoding the carboxylase subunit of
the acetyl coenzyme A carboxylase complex, that conducts car-
boxylation reactions) and CO oxidation gene coxL (encoding the
large subunit of aerobic CO dehydrogenase) with the primers
shown in Table 1. Since no primers were available for the mcrA
gene of the 3-HP pathway, and that pathway has only been
identified from the Chloroflexus clade so far (Hugler and Siev-
ert 2011), primers were designed according to the mcrA genes
of Chloroflexus aurantiacus OK-70-fl (AY530019, 3663 bp in full
length), C. aurantiacus J-10-fl (Caur_2614, 3660 bp in full length)
and Chloroflexus sp. Y-400-fl (CHY400-RS13755, 3660 bp in full
length). Alignment of these three full-length mcrA genes, con-
structed using the Blastn suite-2sequences model (https://blast.
ncbi.nlm.nih.gov/Blast.cgi), showed 99% sequence identity and
100% Query Coverage value. The primer pair was designed using
the Primer-BLAST tool (https://www.ncbi.nlm.nih.gov/tools/pri
mer-blast/); its targeting specificity was tested by BLAST search
against the NCBI nucleotide database. The designed forward
primer McrA1F and reverse primer McrA1R targeted the 1424-
1443 region and 1888-1907 region of the mcrA gene in C. auranti-
acus OK-70-fl, respectively, to amplify a 484 bp long fragment.
PCR was carried out in a total volume of 40 pl containing 2 ul
cDNA, 0.4 pul of each primer (10 M solution) and 20 ul TagMas-
terMix (CoWin Biotech, Beijing, China). PCR amplifications were
performed on a Thermocycler (Eppendorf, Hamburg, Germany)
according to the following procedure: 95°C for 5 min, followed
by 30 cycles of 95°C for 40 s, 1 min at specific annealing tem-
perature (see Table 1), and 72°C for 1 min and final extension
at 72°C for 15 min. For negative control, a similar procedure was
carried out using purified RNA in place of the template to ensure
that there was no genomic DNA contamination. cDNAs of three
individuals for each sponge species and of the seawater samples
were PCR-amplified, and three technical replicates per individ-
ual were processed. The PCR products of replicates were pooled
together for pyrosequencing to reduce potential bias amplifica-
tion (Feng et al. 2016, 2018) (Fig. S1, Supporting Information).
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Table 1. Primers for the PCR amplification of key genes in the CO, assimilation and CO oxidation pathways.

PCR product length
Primer Sequence 5'-3 (bp) Tm (°C) Reference
CO, assimilation gene
rbcL
RubIgF GAYTTCACCAARGAYGAYGA 812 55 (Spiridonova et al. 2004)
RubIgR TCRAACTTGATYTCYTTCCA (Spiridonova et al. 2004)
rbeM
RullF1 GGHAACAACCARGGYATGGGYGA 800 56 (Spiridonova et al. 2004)
RulIR3 CGHAGIGCGTTCATGCCRCC (Spiridonova et al. 2004)
RullF2 GGIACVATCATCAARCCVAA (Spiridonova et al. 2004)
RullR2 TGRCCIGCICGRTGRTARTGCA 400 58 (Spiridonova et al. 2004)
aclB
aclB892F TGGACMATGGTDGCYGGKGGT 312 54 (Campbell and Cary 2004)
aclB1204R ATAGTTKGGSCCACCTCTTC (Campbell and Cary 2004)
cooS
€00S805f AARSCMCARTGTGGTTTTGG 1817 55 (Hunger, Gossner and Drake 2011)
€00S2623r TTTTSTKMCATCCAYTCTGG (Hunger, Gossner and Drake 2011)
mcrA
McrA1F CCGCTATCGGTCAGCTCATT 484 55 Designed in this study
McrA1R GCAATGTGGACGCGATCTTC Designed in this study
accC
ACAC254f GCTGATGCTATACATCCWGGWTAY 509 56 (Auguet et al. 2008)
ACAC720r GCTGGAGATGGAGCYTCYTCWATT (Auguet et al. 2008)
CO oxidation gene
OMP clade coxL
OMPf GGCGGCTTYGGSAASAAGGT 1272 58 (King 2003a)
O/Br YTCGAYGATCATCGGRTTGA (King 2003a)
BMS clade coxL
BMSf GGCGGCTTYGGSTCSAAGAT 1272 58 (King 2003a)
O/Br YTCGAYGATCATCGGRTTGA (King 2003a)

Presence and sizes of these amplification products were esti-
mated by gel electrophoresis (1.5% agarose gel). The PCR prod-
ucts were gel-purified with MinElute Gel Extraction Kit (Qia-
gen). The purified PCR products were cloned with TA-Cloning Kit
(CoWin Biotech) and transformed to Escherichia coli DH5« compe-
tent cells (CoWin Biotech) according to the standardized instruc-
tions. The positive clones were screened by ampicillin resis-
tance and identified by PCR-screening with vector-specific M13
primers. A variable number (24-72) of clones from each clone
library were sequenced on an ABI 3100 capillary sequencer (San-
gon Corp., Shanghai, China).

All the obtained nucleotide sequences were trimmed man-
ually using ClustalW implemented in MEGA 6 with default set-
tings. BLAST searches were performed in the NCBI nucleotide
database using the trimmed sequences. An OTU was defined by
5% dissimilarity threshold using the Mothur package (Schloss
et al. 2009). This sequence dissimilarity cutoff represented
at least one amino acid substitution in the functional gene-
deduced peptide sequences. For each gene studied, randomly
chosen clones were sequenced and the resulting data was com-
bined to make a rarefaction curve, following the previous cate-
gorization strategy (Mohamed et al. 2010; Radax et al. 2012b). To
construct the phylogenetic trees, one representative sequence
from each OTU and the closest sequence to that, retrieved
from the NCBI nucleotide database, were aligned using Clustalw
implemented in the MEGA X (Kumar et al. 2018). The evolution
models of the sequence collections were evaluated using Akaike
information criteria tests implemented by jModelTest 2 (Darriba
et al. 2012). The Maximum-likelihood trees were constructed in
MEGA X with 1000 bootstrap replicates, respectively, based on

the best-fit evolution model with a gamma shape parameter
derived from jModelTest (Darriba et al. 2012). Bootstrap analysis
was used to estimate the reliability of the phylogenetic recon-
structions (with 1000 replicates).

RESULTS

Phylogenetic diversity of bacteria with transcriptional
activity in sponge holobionts

Approximately 40 000 raw pyrosequencing reads of the bacterial
16S rRNA amplicons were obtained from the sponges T. swin-
hoei, P. simplex, Ph. fusca and seawater samples. After removing
the noise and poor-quality reads, 26 141 reads with an aver-
age read length of 200 bp were used for subsequent analyses
(Fig. 82, Supporting Information). At a confidence threshold of
60%, 25 959 qualified reads could be assigned to known phyla
using the RDP classifier. Totally, the OTUs were taxonomically
assigned to 16 phyla in P. simplex, 14 in T. swinhoei, 7 in Ph. fusca
and 7 in the seawater. Only 6 phyla, i.e. Acidobacteria, Acti-
nobacteria, Bacteroidetes, Chloroflexi, Cyanobacteria and Pro-
teobacteria, were shared between the sponges and seawater.
Some phyla, including Deinococcus-Thermus, Firmicutes, Gem-
matimonadetes, Poribacteria, Spirochaetes, Tectomicrobia, Ver-
rucomicrobia, AncK6, PAUC34f, SBR1093 and TM7, were detected
only in the sponges, while Planctomycetes was detected only in
the seawater. Fig. 1A shows the in situ active bacterial phyla with
high relative abundance (> 1% relative abundance of the reads
in the corresponding dataset). The major active phyla (> 5% rel-
ative abundance of the reads in the corresponding dataset) in
T. swinhoei were Proteobacteria (26.1%), Cyanobacteria (22.2%),
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Figure 1. The in situ active bacterial communities in sponges T. swinhoei, P. simplex, Ph. fusca and the environmental seawater at phylum (A) and class (B) levels.

Chloroflexi (19.7%), Poribacteria (8.7%) and Acidobacteria (6.9%).
Plakortis simplex hosts abundant in situ active Chloroflexi (37.8%),
Proteobacteria (26.1%) and Acidobacteria (13.5%); the most abun-
dant phylum in Ph. fusca was Proteobacteria (98.7%) (Fig. 1A).
More than 99% of the reads from the seawater samples were
affiliated with three phyla: Proteobacteria (50.6%), Cyanobacteria
(34.6%) and Bacteroidetes (14.3%) (Fig. 1A). Classes of high rel-
ative abundance (> 1% relative abundance of the reads in the
corresponding dataset) are shown in Fig. 1B. Alphaproteobac-
teria and Gammaproteobacteria were preferentially enriched in
seawater (25.1%, 21.6%), T. swinhoei (16.0%, 12.9%) and P. simplex
(9.1%, 12.1%). Synechococcophycideae was particularly domi-
nantin seawater (29.6%) and T. swinhoei (18.5%); SAR202 was pre-
dominant in T. swinhoei (11.9%) and P. simplex (19.7%). More than

96% of the reads from Ph. fusca were affiliated with Gammapro-
teobacteria (75.9%) and Deltaproteobacteria (20.2%). Flavobac-
teriia were prevalent in seawater (14.2%) and Anaerolineae in P.
simplex (16.9%) (Fig. 1B).

A total of 1156 different 16S rRNA OTUs were detected,
including 446 OTUs from seawater, 425 OTUs from T. swin-
hoei, 310 OTUs from P. simplex and 150 OTUs from Ph. fusca
(Fig. S2, Supporting Information). There were 605 OTUs that
were present in only one species of sponge and 401 OTUs
were found only in the environmental seawater. Meanwhile, 122
OTUs were shared between at least two sponge species and
45 OTUs were shared between the sponges and seawater (Fig.
S2, Supporting Information). Among all these OTUs, 34 domi-
nant OTUs (> 2% relative abundance of the reads in correspond-
ing dataset) were identified (Fig. 2A). Thiohalorhabdales_ OTU1
(66.6%) and NB1-i.OTU2 (19.9%) were dominant in Ph. fusca;
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Figure 2. (A) Phylogenetic tree of the top 34 dominant 16S rRNA OTUs from the cDNA libraries of sponges T. swinhoei, P. simplex, Ph. fusca and environmental seawater
based on 250 nucleotide sites. A representative of each OTU is highlighted. The scale bar represents 5% sequence divergence per homologous position. Bootstrap values
more than 50% of 1000 replicates are shown. The arrow represents the outgroup sequence, i.e. the archaeal 16S rRNA sequence KC357907 of Candidatus Nitrosoarchaeum
limnia BG20. (B) The relative abundance of each OTU in the corresponding clone library.
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Caldilineaceae_OTU6 (14.5%) and SAR202_0TU9 (8.3%) were pre-
dominant in P. simplex; Synechococcus_OTU4 (18.5%) and Porib-
acteria_.OTU10 (4.7%) were enriched in T. swinhoei; and Syne-
chococcus_ OTU3 (29.4%) and Rhodobacteraceae OTUS (17.4%)
were dominant in seawater (Fig. 2B). These results, together with
those at phylum and class levels, suggest considerable sponge-
and sponge species specific diversity of bacteria with transcrip-
tional activity.

Phylogenetic analysis of transcriptionally active CO,
assimilation and CO oxidation genes in sponge
holobionts

The sequences corresponding to rbcL, rbcM, cooS, aclB, mcrA, accC
and coxL genes were amplified using the primers listed in Table 1.
As a result, fragments matching the rbcL, rbcM, accC and coxL
genes were successfully detected in the cDNA of the sponge
and seawater samples, while those of aclB, cooS and mcrA were
not detected. Rarefaction analysis at 5% nucleotide cutoff shows
that for most of the genes sequencing reached an asymptote,
except for rbcM in P. simplex, coxL in T. swinhoei and accC in the
seawater (Table S1, Fig. S3, Supporting Information). Venn anal-
ysis of the transcribed rbcL, rbcM, accC and coxL genes revealed
that few rbcL, rbcM, accC or coxL OTUs were shared between dif-
ferent sponges, or between a sponge and the environmental sea-
water sample (Fig. S4, Supporting Information).

A total of 22 rbcL OTUs were detected in the cDNA of
sponge and seawater samples, including 15 bacterial OTUs and
seven algal OTUs. A total of 11 bacterial OTUs were ascribed
to the photoautotrophic Oscillatoriales-, Chroococcales- and
Prochlorococcaceae-like clusters. The OTUs belonging to the last
two clusters were closely related to the cyanobacterial species,
i.e. Synechococcus spp. ( WP_025781876, AM701776, CP000097,
CP000110), Cyanobium gracile PCC 6307 (CP003495) and Prochloro-
coccus marinus (CPO00576), respectively (Fig. 3A). In addition, the
remaining four bacterial OTUs fell into the chemoautotrophic
Beta- and Gammaproteobacteria-like clusters (Fig. 3A). Mean-
while, 48 rbcM OTUs, including six bacterial OTUs and 42 algal
OTUs, were uncovered from the investigated sponges and sea-
water samples. Phylogenetic analysis showed that the six bac-
terial OTUs grouped into the chemoautotrophic Proteobacteria-
like cluster, while the 42 algal OTUs were affiliated with
the photoautotrophic Dinophyceae-like cluster (Fig. 3C). The
closest relatives found for these bacterial OTUs were Sedi-
minimonas qiaohouensis ( WP_026756535), Phaeospirillum fulvum
(HQ877086), Leptothrix cholodnii SP6 (CP001013), Thioalkalicoccus
limnaeus (HQ877072) and Thiothrix nivea (WP_-002706799). There-
fore, these results suggest that a fraction of phylogenetically
diverse Proteobacteria- and Cyanobacteria-like species may
assimilate CO, via the photo- or chemo-autotrophic strategies
involving the rPP pathway.

Amplification of the fragments corresponding to the accC
gene resulted in sequences representing 27 bacterial OTUs.
These OTUs were interspersed among a broad range of
bacterial clusters, including Actinobacteria-, Bacteroidetes-,
Chlamydiae-, Chloroflexi-, Cyanobacteria-, Firmicutes-, Alpha-,
Beta- and Gammaproteobacteria-like clusters (Fig. 4A). Phy-
logenetic analysis showed three OTUs matching best with
the photoautotrophic Prochlorococcus marinus str. AS9601
(CP000551), Crinalium epipsammum PCC 9333 (CP003620) and
chemoautotrophic Nitrosomonas sp. AL212 (CP002552), respec-
tively. The remaining 24 OTUs were closely related to a broad
range of heterotrophic bacteria among the Actinobacteria-,
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Bacteroidetes-, Chlamydiae-, Chloroflexi-, Firmicutes-, Alpha-
and Gammaproteobacteria-like clusters. Particularly, only
accCphf5 (KP056327) was shared among the three sponges.
Thus, a fraction of phylogenetically diverse heterotrophic
bacteria might contribute to CO, assimilation via carboxylation
reactions in sponge holobionts.

Fragments corresponding to the CO oxidation related gene
coxL were successfully amplified from the cDNA of sponge
samples and seawater. The detected coxL OTUs grouped into
the Oligotropha-Mycobacterium-Pseudomonas (OMP) clade and the
Burkholderia-Mesorhizobium-Sinorhizobium (BMS) clade, accord-
ing to the reported coxL phylotype classification (King 2003a)
(Fig. 5A). In the BMS clade, 51 OTUs fitted into the Proteobacteria-
like cluster; OTUs in this lineage were closely related to preo-
teobacterial species. The remaining seven OTUs in the BMS
clade that fell into the Bacteroidetes-, Gemmatimonadetes-
, Firmicutes- and Chloroflexi-like clusters, and matched best
with Phaeodactylibacter xiamenensis (KGE88473), Phaeodactylibacter
xiamenensis (KGE88473), Alicyclobacillus herbarius (WP_026962862)
and Thermomicrobium roseum ( WP_015922159). In the OMP clade,
16 OTUs fell into the Proteobacteria-like cluster. These OTUs
were closely related to preoteobacterial species. Two OTUs were
affiliated with Actinobacteria-like cluster and matched best with
Nocardioides sp. JS614 (CP000509) and Pseudonocardia dioxanivo-
rans CB1190 (CP002593). Thus, the phylogeny of coxL transcripts
suggests that a broad range of phylogenetically diverse bacteria
may actively oxidize CO in the investigated sponges.

The proportions of different OTUs, identified by the tran-
scribed rbcL, rbcM, accC, and coxL genes, in corresponding clone
libraries are shown in Fig. 3B, 3D, 4B, and 5B, respectively. In
the case of rbcL, the amounts of different sequence variants
described are in a comparable range in both sponge samples
and seawater. The diversity of rbcM OTUs is greater in sponges
than that in seawater; however, it is the opposite case for accC.
For coxL, Ph. fusca and seawater have less OTUs compared to the
other sponges analyzed. These results indicate that the various
strategies for CO, assimilation and CO oxidation are possibly
used in different proportions within the communities in differ-
ent sponges and seawater.

DISCUSSION

Compared with rDNA-based strategy, which only indicates the
metabolism potentials of microbes involved in ecological pro-
cesses, RNA-based approach provides further insights into the
activity of sponge microbiota. In this study, the detection of
functional gene transcripts indicates the presence of in situ
active bacteria with CO, assimilation and CO oxidation func-
tions in the investigated sponges and the seawater surrounding
them. A fraction of phylogenetically diverse Proteobacteria- and
Cyanobacteria-like species may assimilate CO, via the photo- or
chemoautotrophic strategies through the rPP pathway, and phy-
logenetically diverse heterotrophic bacteria might contribute
to CO, assimilation via carboxylation reactions. Although the
microbiota in different sympatric sponges varied extensively,
the amounts of OTUs with potential abilities of CO, assimilation
and CO oxidation remained within a comparable range.

The detection of transcribed bacterial rbcL/rbcM and accC
genes indicated that bacteria in sponge holobionts could assim-
ilate CO, via the autotrophic rPP cycle, and via the anaplerotic
CO; assimilation pathway, respectively. Active Thaumarchaeota
was once suggested to be present in the same investigated
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Figure 3. (A) Phylogenetic tree of the transcribed rbcL (A) and rbcM (C) genes from sponges T. swinhoei, P. simplex, Ph. fusca and environmental seawater derived cDNA
libraries based on 812 and 400 nucleotide sites, respectively. A representative of each OTU is highlighted. The scale bar represents 5% sequence divergence per homol-
ogous position. Bootstrap values more than 50% of 1000 replicates are shown. (B) The relative abundance of each rbcL (B) and rbcM (D) OTU in the corresponding clone
library. The arrows in A and C represent the outgroup sequences, i.e. the archaeal rbcL sequence L21.1928 of Methanoculleus chikugoensis and the archaeal rbcM sequence
MCON_3086 of Methanosaeta concilii, respectively.
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Figure 4. (A) Phylogenetic tree of the transcribed accC gene from sponges T. swinhoei, P. simplex, Ph. fusca and environmental seawater derived cDNA libraries based on
509 nucleotide sites. A representative of each OTU is highlighted. The scale bar represents 10% sequence divergence per homologous position. Bootstrap values more
than 50% of 1000 replicates are shown. (B) The relative abundance of each accC OTU in corresponding clone library. The arrow represents the outgroup, the archaeal

coxL sequence Saci_2117 of Sulfolobus acidocaldarius.

sponges and seawater (Feng et al. 2018), but the thaumarchaeo-
tal accC genes were not detected here, indicating that the bacte-
ria may play an important role in CO, assimilation rather than
archaea.

Although the rPP cyle is energetically more costly than other
strategies for CO, assimilation, and may therefore be unfavor-
able in an energy-limited environment (Purkamo et al. 2015), it
is the only light-driven autotrophic CO, assimilation pathway
on the Earth, and is of great importance in the ocean (Scan-
lan et al. 2009; Bowler, Vardi and Allen 2010). The transcrip-
tional activity and diversity of the detected rbcL and rbcM genes
suggest that bacterial assimilation of CO, via the rPP pathway
plays a significant role in carbon sequestration in a variety of
microbes in sponges and seawater. Phylotypes of transcribed
rbcl and rbcM genes were not randomly distributed among the
investigated sponge and seawater samples collected from the
same habitat, but rather formed distinct clusters, indicating
that sponge species can affect the composition of autotrophic
CO,-assimilating communities. Diverse phylotypes of the tran-
scribed rbcl and rbcM genes show that a fraction of divergent
cyanobacteria and microalgae lineages may assimilate CO; via
the photoautotrophic rPP cycle in the investigated sponges.

Cyanobacteria and microalgae are proven to be the main pri-
mary producers in the ocean (Scanlan et al. 2009; Bowler, Vardi
and Allen 2010); they have been detected from a variety of
sponges by rRNA-based assays (Granados et al. 2008; Weisz
et al. 2010; He et al. 2014; Moitinho-Silva et al. 2014; Burgsdorf
et al. 2015) and metagenomic analysis (Gao et al. 2014). Thus,
in addition to microalgae, e.g. Chlorophyta-, Streptophyta- and
Dinophyceae-like lineages, a portion of the symbiotic bacteria
might actively assimilate CO, via the photoautotrophic rPP path-
way in sponge holobionts.

Additionally, a fraction of the transcribed rbcL and rbcM frag-
ments fallinginto the Proteobacteria-like clusters were affiliated
with sulfur-oxidizing chemoautotrophs Thioploca ingrica, Candi-
datus Thiobios zoothamnicoli, Thioalkalicoccus limnaeus and Thio-
thrix nivea (Bryantseva et al. 2000; Lapidus et al. 2011), and
the sulfur-oxidizing symbiotic chemoautotroph within the clam
Solemya velum (Schwedock, Harmer and Scott 2004). These find-
ings imply that particular bacterial clades might couple the
chemoautotrophic rPP pathway of CO, assimilation with sul-
fur metabolism in sponges, which supports the previous discov-
eries of the chemoautotrophic sulfur-oxidizing bacteria within
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Figure 5. (A) Phylogenetic tree of the transcribed coxL gene from sponges T. swinhoei, P. simplex, Ph. fusca and environmental seawater derived cDNA libraries based
on 1272 nucleotide sites. A representative of each OTU is highlighted. The scale bar represents 10% sequence divergence per homologous position. Bootstrap values
more than 50% of 1000 replicates are shown. (B) The relative abundance of each coxL OTU in the corresponding clone library. The arrow represents the outgroup, the
archaeal accC sequence Mbur_2426 of Methanococcoides burtonii.

610z aunp zg uo Jasn Ausiaaiun Buo| oeir leybueys Aq £66€15S//80211///S610BNSE-8]011B/08SWa)/W02 dno dlwapeae//:sdiy Wolj papEojuMo(]



sponges (Meyer and Kuever 2008; Nishijima et al. 2010; Tian et al.
2016).

Meanwhile, we detected the transcribed accC phylotypes
affiliated with the homologues from a variety of bacterial lin-
eages, most of which consist of heterotrophs. The heterotrophic
demand for CO, could arise from multiple cellular processes,
e.g. anaplerotic CO, assimilation reactions to replenish the TCA
cycle intermediates, synthesis of amino acids and precursors of
nucleic acids and biosynthesis of fatty acids (Lombard and Mor-
eira 2011). This indicates the carbon incorporation metabolism
via anaplerotic CO, assimilation pathways in heterotrophic bac-
teria, which is consistent with the previous surveys performed
on the Arctic microplanktons (Alonso-Saez et al. 2010), but dif-
fers from the surveys done on some lakes, in which both the accC
genes involved in the heterotrophic anaplerotic pathway and
in the autotrophic 3-HP/4-HB pathway were uncovered (Auguet
et al. 2008; Lliros et al. 2011), indicating that prokaryotic com-
munity performing carboxylation reaction could be affected by
their habitats.

CO is the simplest oxocarbon generated during decompo-
sition of organic compounds. In aquatic environments, signif-
icant CO production occurs in the photochemical degradation
of dissolved organic matter (Valentine and Zepp 1993). Bacte-
ria are considered as the dominant CO scavengers (Tolli and
Taylor 2005). Although cooS genes were not detected in this
study, the CO consumption potential in sponges by aerobic
CO-oxidizing bacteria was suggested by detecting coxL tran-
scripts. Furthermore, our molecular survey of coxL gene tran-
scripts revealed a phylogenetically diverse group of CO oxidiz-
ers, including Actinobacteria, Bacteroidetes, Chloroflexi, Firmi-
cutes, Gemmatimonadetes and Proteobacteria. This revelation
was consistent with the discovery of abundant bacterial coxL
genes from the metagenomes of the sponges Cymbastela con-
centrica and Neamphius huxleyi (Li et al. 2014; Thomas et al.
2010). Thus, a wide range of phylogenetically diverse bacteria in
sponge holobionts display the CO-oxidation capacity. Addition-
ally, the communities of the revealed aerobic CO-oxidizers dif-
fer among the investigated sponge species and seawater. This
difference most likely reflects the various responses of diverse
bacterial communities to their sponge hosts, as particular bac-
teria may have different affinities toward CO (King and Hungria
2002).

Though high-throughput sequencing analysis has been suc-
cessfully performed to reveal the diversity of certain functional
genes, it is not easy to design highly efficient primers for high-
throughput sequencing of functional genes (Dowle et al. 2015),
e.g. for 812-bp rbcL gene and 1272-bp coxL gene in this study. The
metagenomic approach is not very efficient in detailed analysis
of functional genes, since it is not target gene directed, allowing
such analysis to only some extent. Therefore, traditional PCR-
based target gene analysis still has some advantages in con-
ducting environmental studies of microbial functions (Fenget al.

2018; Lynn et al. 2016). Despite the unavoidable bias inher-
ent in a PCR-based approach, which may hinder unveiling the
real diversity of the genes of interest, some of the marker genes
used in this study have remained useful for studying microbial
CO; assimilation and CO oxidation due to their relatively high
degree of conservation, widespread distribution, functional sig-
nificance and an increasing number of sequences published in
GenBank.

The autotrophic CO, incorporation through the rTCA cycle
and the 3-HP pathway were not verified to be present in these
sponges, because no aclB gene or mcrA gene transcripts were
detected. Neither could we verify the rACA pathway since no
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cooS genes were detected. One possible reason may be that
these genes are not present (at detectable levels) in the ana-
lyzed samples, or the sponge microbiota hosts different types
of aclB, mcrA or cooS genes that could not be detected with the
primers or the PCR procedure used in this study. The primers
could be optimized by blasting the primer sequences against
sponge metagenomes in the SRA database and editing them
accordingly if there are any hits (Horn et al. 2016). To compare
the difference in gene expression among the transcribed rbcL,
rbeM, accC and coxL genes, a qPCR assay for each functional gene
across samples will be carried out in the future (similarly to Fiore
et al. 2015). Since a considerable part of the RuBisCO-encoding
genes originated from eukaryotic species, phylogenetic diversity
of eukaryotes in sponges will be investigated in the future as
well. Given that the functional genes may be transferred hori-
zontally between species (especially in bacteria), the whole con-
cept of gene-specific phylogenetic diversity is problematic to
some extent. Metatranscriptomics is probably a better approach
to reveal the metabolic potential and link it to the phylogenetic
diversity (Moitinho-Silva et al. 2017). The physiological and bio-
chemical measurements of the bacterial CO, assimilation and
CO oxidation rates are also necessary to gain further insight in
the functions of these communities and will be carried out in
the future. Moreover, the presence and diversity of transcribed
CO; assimilation and CO oxidation genes verified in this study
warrant further investigation into their functional and ecolog-
ical importance in sponges. Altogether, this investigation con-
tributes to better understanding of the carbon metabolism of
sponge-symbiotic microbiota.

CONCLUSIONS

Phylogenetically diverse bacteria with transcriptional activity
were detected in the sponge holobionts, which showed signif-
icant variations among three sympatric sponges T. swinhoei, P.
simplex, Ph. fusca and the seawater from their environment. The
analysis of transcriptionally active functional genes revealed
that the autotrophic CO, assimilation through the rPP pathway,
heterotrophic anaplerotic CO, assimilation and aerobic CO oxi-
dation may be performed by phylogenetically diverse bacteria in
sponge holobionts. Though the microbiotas varied extensively
in the composition of bacterial species in different sponge holo-
bionts, they could still be functionally equivalent in their bacte-
rial CO, assimilation and CO oxidation capabilities.
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