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Abstract

For metaproteomics data derived from the collective protein composition of dynamic multi-organism systems, the proportion of
missing values and dimensions of data exceeds that observed in single-organism experiments. Consequently, evaluations of differential
analysis strategies in other mass spectrometry (MS) data (such as proteomics and metabolomics) may not be directly applicable to
metaproteomics data. In this study, we systematically evaluated five imputation methods [sample minimum, quantile regression,
k-nearest neighbors (KNN), Bayesian principal component analysis (bPCA), random forest (RF)] and six imputation-free methods
(moderated t-test, two-part t-test, two-part Wilcoxon test, semiparametric differential abundance analysis, differential abundance
analysis with Bayes shrinkage estimation of variance method, and Mixture) for differential analysis in simulated metaproteomic
datasets based on both data-dependent acquisition MS experiments and emerging data-independent acquisition experiments. The
simulation datasets comprised 588 scenarios by considering the impacts of sample size, fold change between case and control, and
missing value ratio at random and nonrandom. Compared to imputation-free methods, KNN, bPCA, and RF imputation performed
poorly in datasets with a high missingness ratio and large sample size and resulted in a high false-positive risk. We made empirical
recommendations based on the balance of sensitivity in analysis and control of false positives. The moderated t-test was optimal in
scenarios of large sample size with a low missingness ratio. The two-part Wilcoxon test was recommended in scenarios of small sample
size with a low missingness ratio or large sample size with a high missingness ratio. The comprehensive evaluations in our study can

provide guidance for the differential abundance analysis in metaproteomics.
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Introduction

Metaproteomics has emerged as a robust strategy for analyzing
the taxonomic structure and functional characteristics of micro-
bial communities across diverse environments [1], including the
gut [2], soil [3], wastewater [4], and deep sea [5]. Advances in liquid
chromatography-tandem mass spectrometry (LC-MS/MS) tech-
nologies facilitate the comprehensive characterization of micro-
bial proteins in a deep, broad, and high-throughput manner. The
identification of key microorganisms or microbial proteins within
communities is crucial for elucidating the metabolic activities and
interactions of microorganisms in diverse environments. Conse-
quently, a sensitive and precise differential abundance analysis
strategy is imperative for metaproteomic data.

However, the analysis of LC-MS/MS data is compromised by
its high missing value ratio [6]. The sparsity of metaproteomic
data could be even higher due to the huge diversity and speci-
ficity both within and between samples [/, 8]. Metaproteomic
data derived from label-free quantitative techniques coupled with
data-dependent acquisition (DDA) mass spectrometry (MS) exper-
iments may exhibit missingness ratios ranging from ~40% to
~90% [9-11] and, under certain extreme conditions, as high as

96% [12]. Although data-independent acquisition (DIA) strategies
reduced the missingness ratio of MS data, current attempts of DIA
metaproteomic analyses still yield data with ~30%-40% missing
values [8, 13]. Missing values are generally categorized into three
types: missing not at random (MNAR), where abundances below
the instrument’s detection limit are missed (also referred to as
censoring), missing at random (MAR), and missing completely at
random (MCAR) [6]. As MAR is generally assumed to be MCAR
in proteomics data, the distinction between different missing
mechanisms can be achieved by varying proportions of MNAR and
MCAR [14-16]. Recently, Li and Smyth proposed the protDP model,
which estimates intensity-dependent probabilities of missing val-
ues in label-free proteomics through a logit-linear function [17].
Considerable methods have been proposed to address the issue
of missing values in MS data. These methods can be classified into
two main categories: (i) imputation-based methods, which impute
the missing values before conducting statistical tests with com-
plete data, and (ii) imputation-free methods, which use models
retaining and accounting for missing values or just eliminate the
sample with missing values for test [18]. Imputation methods
include left-censored approaches (e.g. minimum imputation)
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and estimation-based imputation (e.g. bPCA: Bayesian princi-
pal component analysis, KNN: k-nearest neighbors) [19, 20].
Imputation-free models consist of the two-part statistical test
[21], accelerated failure time (AFT) [22], and semiparametric
differential abundance analysis (SDA) [23], among others. In
the field of metaproteomics, Plancade et al. proposed a feature
selection method that considers both missing and nonmissing
data utilizing a similar model as SDA [7].

Extensive research has evaluated the performance of differ-
ential analysis strategies across various MS-based data types
[15, 18, 24-29]. The recommended methods varied depending on
the application scenario and simulation strategy. However, many
previous studies did not compare the performance of imputation
and imputation-free strategies. Due to variations in data dimen-
sion, degrees of missingness, and sample sizes, comparisons of
strategies in proteomics and metabolomics may not be directly
transferable to metaproteomics. For example, eight proteomic
datasets characterized by sample sizes ranging from 9 to 56 were
examined in Liu and Dongre’s evaluation, where the number of
proteins detected varied from 2000 to 7000, and the missing-
ness rates of the raw intensity matrices ranged from 4% to 32%
(for label-free quantification intensity matrices, 15%—47%) [15].
For metabolomics, Taylor et al. investigated three metabolomic
datasets comprising sample sizes of 26, 62, and 544. The corre-
sponding missingness rates were 40.6%, 12.7%, and 0.59%, respec-
tively. Only a few hundred metabolites were detected in all three
datasets [18]. Both the number of compounds detected and the
missingness rate were higher in metaproteomic datasets accord-
ing to our investigation.

The differences in these characteristics imply that metapro-
teomic data may differ from other MS data in distribution
and missing value composition. The high missingness rate also
challenges imputation and statistical tests. Consequently, the
performance of different strategies on metaproteomic datasets
necessitates further evaluation. Hence, we conducted a thorough
comparison of five commonly employed imputation methods and
six imputation-free methods using simulated datasets of both
DDA and DIA metaproteomics across varying degrees of MNAR.
Empirical recommendations were then proposed based on a broad
spectrum of sample sizes, missingness ratios, MNAR ratios, and
fold changes between control and case samples. We believe that
our findings offer practical guidance for the differential abun-
dance analysis of metaproteomics data across diverse scenarios.

Materials and Methods

Metaproteomic datasets

To simulate the metaproteomics datasets that reflect real-world
scenarios, we utilized a simulation framework that incorporates
the characteristics of real metaproteomic data. We referenced
three public datasets, encompassing two DDA and one DIA MS
experiments of metaproteomics.

ProteoCardis

The ProteoCardis project reported by Bassignani was an associ-
ation study between the human intestinal metaproteome and
cardiovascular diseases [12]. ProteoCardis includes two classes:
patients with acute cardiovascular disease (N=49) and healthy
controls (N=50). The collected gut microbiota of patients was
fractionated into cytosolic and envelope compartments, which
were analyzed separately. Details of the MS experiment design
can be seen in section 4.1.2 of the thesis [12]. The peptide ions
were analyzed with the DDA protocol. ProteoCardis also served as

an experiment dataset to develop a feature selection method in
metaproteomics by Plancade et al. [7]. We selected the cytosolic
subset for analysis. Data are available at https://doi.org/10.15454/
ZSREJA.

Ad libitum time-restricted feeding

Palomba et al. aimed to investigate the effects of long-term time-
restricted feeding (TR) on gut microbiota protein expression in a
rat model with metaproteomics [11]. The researchers collected
stool samples from 16 rats, divided into two groups: ad libitum
(AL)-fed and TR-fed. Stool samples were collected after 48 weeks
of dietary regimen. Peptide mixtures were then analyzed by LC-
MS/MS using the DDA mode of the LTQ Orbitrap Velos mass spec-
trometer. The data are available at the PRIDE database (https://
www.ebl.ac.uk/pride/archive/projects/PXD024509).

Data Independent Acquisition-Parallel Accumulation Serial
Fragmentation

Gomez-Varela et al. reported the Data Independent Acquisition-
Parallel Accumulation Serial Fragmentation (DIA-PASEF) work-
flow to improve the peptide detection reproducibility and
quantification accuracy of metaproteomics [13]. The workflow
was applied to a preclinical mouse model of chronic pain. Briefly,
they collected fecal samples of age-matched female mice before
(Pre) and 14 days (14D) postsurgery. The peptides were analyzed
using nanoflow reversed-phase liquid chromatography (Nano-
RPLC) coupled with a timsTOF Pro mass spectrometer, employing
DIA modes. We take the presurgery samples (N =12) as the control
group and the 14D samples (N=12) as the case. The dataset
is available in the PRoteomics IDEntifications Database (PRIED)
(https://www.ebi.ac.uk/pride/archive/projects/PXD040947).

More detailed information on these three datasets is listed
in Table 1. Intensity values were total quantity-normalized for
each sample to the median total intensity across all samples
before subsequent analysis. We excluded features from the three
datasets with high missingness rates (>90%) to mitigate their
impact on the overall distribution, in alignment with common
practices in applications.

Simulation framework

Two-group comparison studies with case-control designs were
simulated to evaluate different statistical strategies. Half of the
samples were designated as controls. Each dataset was simu-
lated to contain 10 000 proteins (features), of which 50% were
differentially abundant. The simulation framework incorporates a
nonmissing-value step and a missing-value step to generate data
that mimic the distribution of real metaproteomic datasets with
specific missingness ratios and compositions (MNAR and MCAR).
For clarity, itis assumed that the MNAR ratio + MCAR ratio=1; the
total missingness ratio is independent of the MNAR/MCAR ratio.

In the first step, datasets with no missing values were gener-
ated with reference to Ding et al.’s study for phosphoproteomics
[29]. We assumed that the intensity of each protein in the case/
control group follows a Log-normal distribution

Xj ~ LN (i, 0) (1)

where Xj denotes the intensity of protein i in sample j. The
two parameters of the Log-normal distribution vary for different
protein i. u;, the log-mean of the protein intensities, was sampled
from a normal distribution

i ~ N (10, 08) ()
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Table 1. Details of the reference metaproteomics dataset.
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Protocol Dimension? Filtered Missingness Filtered
dimension® ratio missingness ratio®
ProteoCardis DDA 120,703x99 11,433%x99 0.961 0.745
ALTR DDA 15,691x16 15,482x16 0.377 0.332
DIA-PASEF DIA 14,507 %24 13,486x24 0.364 0.320

aFeature size (number of proteins)xSample size. PFeatures with missingness ratio >90% were filtered out.

For the case group of differentially abundant proteins, the
wi parameters were added with In (Fold Change). The standard
deviation (SD) of the protein intensities on the log scale, i, was
sampled from an inverse gamma distribution

o; ~ IG (a, B) (3)

All default simulation parameters (uo, 02, «, ) in Equations (2)
and (3) were calculated from the three reference metaproteomic
datasets.

Defining the mechanism of missing values is crucial for simu-
lating the metaproteomic datasets. Negative correlations between
the intensity of a protein and its missingness ratio were observed
(Supplementary Fig. S1A), indicating MNAR in all three reference
datasets. In the missing-value step, intensity-related MNARs were
generated, and MCARs were then randomly sampled in data
matrices. We assigned MNAR ratios across a broad range (0.2, 0.4,
0.6, 0.8) following Lazar et al.’s simulation on proteomics [14]. For
MNAR generation, a threshold matrix was initially produced from
a normal distribution with u = q and o = 0.01, where q is the
mth percentile of the complete intensity distribution generated in
the nonmissing-value step (r equals to the missingness ratio *
100). Then, from among all the cells in the intensity matrix with
values less than the corresponding values in the threshold matrix
(occupying approximately 7 %), a subset (with a number equal to
the total number of cells x missingness ratio x MNAR ratio) was
sampled as abundance-dependent missing values. Next, from the
remaining non-MNAR cells, cells missing completely at random
(MCAR) were randomly selected to achieve a total missingness
ratio of 7% for the dataset. Proteins that consisted entirely of
missing values within either the case or control group were sub-
sequently removed.

Two simulation studies were conducted sequentially. In Simu-
lation 1, datasets that mirrored the reference ProteoCardis, ALTR,
and DIA-PASEF datasets were simulated, with a similar sample
size, feature size, total missingness ratio, and distribution of pro-
tein intensity means and standard deviations. The ProteoCardis
dataset was employed to simulate DDA data with large sample
sizes and high rates of missing values, and ALTR represented
DDA data with small sample sizes and lower missingness ratios.
DIA-PASEF was utilized to simulate emerging DIA metaproteomic
experiments with lower levels of data sparsity. The simulated
datasets generated based on the characteristics of ProteoCardis,
ALTR, and DIA-PASEF were referred to as DDA_HMiss, DDA_LMiss,
and DIA_LMiss, respectively, in the following sections. The fold
change for differential proteins was set to 2 in simulation 1,
and four MNAR ratios were simulated (0.2, 0.4, 0.6, and 0.8). The
simulation procedure and the parameters are depicted in Fig. 1.
Simulation 2 was applied to evaluate different statistical methods
across a broader spectrum of sample sizes, fold changes, and
missingness ratios. Given the 96% high missingness rate observed
in the whole data matrix of ProteoCardis and previous studies
indicating that up to 90% of missingness can still yield unbiased

results [30], the upper limit of the missingness ratio in Simulation
2 was set at 90%. Simulation 2 used the distribution of protein
intensity means and SDs of ProteoCardis. In Simulation 1, 500
datasets were generated for each parameter combination, totaling
12 combinations. For Simulation 2, each parameter combina-
tion was simulated 100 times due to the extensive number of
combinations (576 in total) and the substantial computational
requirements. The simulation program was executed by R scripts
using a single core of the Intel Xeon (R) Scalable Cascade Lake
6248 (2.5GHz) Central Processing Unit (CPU).

Statistical test methods

Six imputation-free methods were evaluated in this study:
moderated t-test (ModT) [31], two-part model (two-part t-test and
two-part Wilcoxon test, twoT, and twoWilcox) [32], accelerated
failure time (AFT) [22], semiparametric differential abundance
analysis (SDA) [23], differential abundance analysis with Bayes
shrinkage estimation of variance method (DASEV) [33], and the
Mixture model proposed by Taylor et al. [34]. For imputation-
free strategies, we also evaluated t-tests and Wilcoxon tests
with missing samples eliminated. Five imputation methods were
assessed: sample minimum (SMin), KNNs [20], Bayesian principal
component analysis (bPCA) [19], random forest (RF) [35], and
quantile regression (QR) [36].

Imputed data were tested using both the parametric t-test
and the nonparametric Wilcoxon test. For the parametric t-test
and the two-part t-test, log2 transformation was applied to the
datasets. For the Wilcoxon test and the two-part Wilcoxon test,
the datasets remained at the original scale. The P-values derived
from statistical tests were adjusted by Benjamini-Hochberg (BH)
correction [37]. The proteins with BH-adjusted P-value <0.05 were
considered as differentially abundant. The performance of the
selected methods was evaluated by standardized partial area
under the receiver operating characteristic (PAUROC), area under
the precision-recall curve (AUPRC), and false-positive rate (FPR)
[38,39]. Partial AUROC is a more practical metric for evaluation of
diagnostic performance, as it focuses solely on ROC regions with
high specificity. Detailed information regarding the statistical
methods, metrics, and software implementation can be found in
Supplementary File S1.

Results

Performance of strategies in simulations of real
datasets

The performance of statistical methods in different MNAR ratios
was evaluated in Simulation 1, where the sample size and
missingness ratio were consistent with those of three reference
metaproteomic datasets. The pAUROC of each method in the
three simulated datasets is depicted in Fig. 2. The robustness
of methods in different MNAR levels varied. The pAUROC for
AFT, SMin imputation, and QR imputation showed substantial
increases when MNAR ratios elevated from 0.2 to 0.8, with
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Figure 1. Process for dataset simulation and statistical methods to be assessed. Two simulations (Simulations 1 and 2) were conducted. The parameters
used in each simulation (sample size, fold change, missingness ratio, and MNAR ratio) were displayed in the corresponding column. The simulation
process encompasses a non-missing value step (to generate complete data) and a missing-value step (to introduce varying ratios of MNAR and MCAR).
Six imputation-free methods and five imputation methods were evaluated in the study.

average improvements of 10.6%, 9.2%, and 18.2% in DDA_HMiss,
DDA_LMiss, and DIA_LMiss, respectively. AFT, SMin, and QR are
methods designed for left-censored data and hence performed
better with high MNAR ratios. Conversely, the pAUROC of
three imputation methods (KNN, bPCA, and RF) significantly
decreased with increasing MNAR ratios in three simulated
datasets, indicating their inapplicability to datasets with a high
prevalence of left-censoring missingness. In DDA_HMiss, the most
substantial decrease in pAUROC was observed in Wilcox_bPCA
(bPCA imputation coupled with Wilcoxon test), with a reduction
of ~9.0% from 0.543 (at an MNAR ratio of 0.2) to 0.494 (at an
MNAR ratio of 0.8). Wilcox_RF experienced the largest decline
in both DDA_HMiss (7.1%, from 0.576 to 0.535) and DIA_LMiss
(17.2%, from 0.698 to 0.578).

Therefore, RF and KNN imputation only exhibited superior
performance among imputation methods in low MNAR ratios, but
their advantages are not pronounced compared to the remaining
imputation-free methods. For example, T_RF and T_KNN both
achieved the highest pAUROC of 0.582 among all methods in
DDA_LMiss with an MNAR ratio of 0.2 but only 0.004 higher
than the T-test with missing values eliminated. However, at an
MNAR ratio of 0.8, the median pAUROC of T_KNN (0.568) and
T_RF (0.548) was lower than that of the best AFT (0.586) and
second-level Wilcox_SMin (0.584). Similarly, in DIA_LMiss, when
the MNAR ratio increased to 0.8, Wilcox_SMin (median pAUROC
of 0.697) and Wilcox_QR (0.695) outperformed T_KNN (0.690),
but they were less effective than ModT (0.711) and twoWilcox
(0.705). However, all the imputation methods performed poorly
at a high missingness ratio of 0.75 in DDA_HMiss despite the
large sample size of 100. Their pAUROCs were much lower than
the Wilcoxon and t-test with missing values eliminated. In this
case, the maximum median pAUROC across all MNAR ratios of
imputation methods was 0.567 for T_RF, compared to 0.6061 for
the Wilcoxon test and 0.6058 for the t-test.

Considering all MNAR levels together, ModT exhibited the high-
est pAUROC in DDA_HMiss and DIA_LMiss, with median pAU-
ROC values of 0.609 and 0.723 across four MNAR ratios, respec-
tively. While at an MNAR ratio of 0.8 in DDA_HMiss, the median

PAUROC for Mixture (0.614), DASEV (0.614), and twoWilcox (0.610)
is slightly higher than that of ModT (0.604). In DDA_LMiss with
a smaller sample size of 16, the Wilcoxon test with missing
values eliminated (imputation-free Wilcoxon), imputation-free t-
test, and ModT performed similarly and achieved the best median
PAUROC of 0.579, 0.578, and 0.576 across four MANR levels.

Imputation resulted in high FPR under a high
missingness ratio and a large sample size

The poor performance of RF and KNN imputation at DDA_HMiss
attracted our attention, as both methods have been recom-
mended in previous evaluations in proteomics and metabolomics
[18, 28]. However, it has also been proposed that imputation may
introduce a high proportion of false positives in proteomic analy-
sis [17, 26]. Therefore, we examined the FPR in the test results of
the 50% nondifferential proteins. Overall, the imputation methods
exhibited a higher FPR compared to the imputation-free methods
(Fig. 3). In the scenario of DDA_HMiss with a missingness ratio of
0.75 and a sample size of 100, the median FPR of KNN (0.115 with t-
test and 0.146 with Wilcoxon test across four MNAR ratios), bPCA
(0.175 and 0.962), and RF (0.368 and 0.757) reached unacceptable
levels. In simulations of the DIA_LMiss dataset with a reduced
missingness ratio of 0.3 and sample size of 24, KNN (0.034 on
average of t-test and Wilcox test across four MNAR ratios) and
RF (0.088) imputations also demonstrated higher median FPR
compared to imputation-free tests (with a maximum FPR of
0.021 on twoT). The elevated FPR should also be considered when
applying imputation to metaproteomic data with a large number
of features (for example, >10 000 proteins in our datasets). In
DDA_LMiss with a smaller sample size of 16, twoT had the highest
median FPR of 0.020 across four MNAR ratios, and T_RF was the
second highest (0.014). The other methods all exhibited a median
FPR lower than 0.005.

We sought to investigate the effects of imputations to figure
out the reason for their poor performance. Effect size was used
as the scaled quantitative measure of the difference between the
case and control groups. The impact of missing value generation
and imputation to effect sizes of each protein in 500 rounds of
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Figure 2. PAUROC of statistical tests for imputation and imputation-free methods across different MNAR ratios. (A) pAUROC in the simulation scenario
for the DDA_HMiss dataset (sample size =100, fold change =2, missingness ratio=0.75). (B, C) pAUROC for the simulation scenario of DDA_LMiss and
DIA_LMiss datasets. Within each panel, boxplots are categorized into three subcolumns based on the types of statistical methods. For imputation
methods, “nonparametric” denotes methods coupled with Wilcoxon test, and “parametric” denotes methods coupled with t-test. Wilcoxon test and
t-test utilizing data with missing values eliminated were labeled with just Wilcox and T.
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Figure 3. FPR of statistical tests for imputation and imputation-free methods across different MNAR ratios. (A) FPR in the simulation scenario for the
DDA_HMiss dataset (sample size=100, fold change =2, missingness ratio=0.75). (B, C) FPR for the simulation scenario of DDA_LMiss and DIA_LMiss

datasets.

simulation is depicted in Fig. 4 and Supplementary Fig. S2. In the
scenario of DDA_HMiss, for proteins without difference between
case and control (negative features), the median bias between
missing data and complete data was close to 0, with values of

0.0001 and 0.0006 for MNAR ratios of 0.2 and 0.8. The generation of
missing data did not systematically alter the differences between
the two groups. Conversely, KNN, bPCA, and RF imputation
amplified the difference between case and control for negative
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Figure 4. The bias of effect size compared to complete data in each round of simulation in DDA_HMiss. The difference between the effect size of missing
data (labeled as “missing” on the x-axis of each panel) or imputed data (labeled with the imputation method names) and the completed data were
quantified and visualized. In each panel, scenarios with different MNAR ratios of 0.2, 0.4, 0.6, and 0.8 are displayed. Differentially abundant proteins

(labeled as “positive”) and proteins with no difference abundance (labeled as “negative”) were plotted separately.

features, as their median effect size biases were positive. The
maximum bias was observed in RF imputation, which was
0.353 and 0.352 for MNAR ratios of 0.2 and 0.8, respectively.
This may account for the high FPR of these three imputations.
In the DIA_LMiss scenario with a low missingness ratio and
small sample size, KNN, bPCA, and RF imputation also modified
the effect size but in a smaller range than in DDA_HMiss
(with a maximum bias of 0.117 for bPCA in MNAR ratio of 0.2,
Supplementary Fig. S2), corresponding to a lower FPR in Fig. 3C.
The effect size bias of DDA_LMiss was similar to that of DIA_LMiss
(Supplementary Fig. S2).

For proteins differentially abundant between case and control
(positive features), SMin and QR imputation also systematically
changed the effect size. They reduced the differences for positive
features in all three datasets, especially in low MNAR ratios. For
example, for an MNAR ratio of 0.2, the median bias was —0.257
and —0.252 for SMin and QR in DDA_HMiss, compared to —0.156
and —0.140 for an MNAR ratio of 0.8 (Fig.4). This aligns with
expectations, as both methods are designed to capture the lower

detection limit of the instrument and are more appropriate for
censoring mechanisms (high MNAR ratios) [34].

Overall empirical recommendations in broad
scenarios

To determine the optimal strategies across various scenarios,
11 statistical methods were assessed in Simulation 2, encom-
passing a broad spectrum of sample sizes (10-200), fold changes
between case and control (1.2-5), and missingness ratios (0.3—
0.9). MNAR ratios in Simulation 2 were also set at 0.2, 0.4, 0.6,
and 0.8. By manipulating sample sizes and missing value ratios,
our findings were further confirmed in scenarios not covered
by the reference datasets. After comparing scenarios with small
sample sizes of 20 and large sample sizes of 100, as well as
missingness ratios from low to high (0.3-0.9), we found that the
FPR of the imputation methods indeed increased with sample size
and missingness ratio and eventually reached unacceptable levels
(Supplementary Fig. S3). Compared to imputation-free methods,
imputation only showed nonpronounced advantages in small
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sample size with low MNAR ratios, consistent with the previous
section (Supplementary Fig. S4).

Then, we developed empirical recommendations based on the
average pAUROC, AUPRC, and FPR of simulations across four
MNAR ratios and six-fold change levels, as the MNAR ratio were
difficult to quantify and the dataset is often a mixture of differ-
ent fold changes in applications. The method with the highest
PAUROC in each scenario was presented in Fig. 5A. Wilcox_bPCA
and DASEV performed the best in small sample size (< 40) with
extreme high missingness ratio (> 0.7). However, even the optimal
PAUROC was very low (equal to about 0.5) in these scenarios,
which suggested a significant challenge in metaproteomics anal-
ysis with a small sample size and an extremely high missingness
ratio. ModT exhibited the highest pAUROC in the remaining sce-
narios of sample sizes and fold changes. As for FPR, we observed
that in some scenarios in Simulation 2, twoWilcox was able to
effectively control the FPR while maintaining competitive pAU-
ROC. For example, at sample sizes of 100 (Fig. 5D), the average
PAUROC of twoWilcox differed from the top-ranked ModT only
by a very low amount (with the maximum difference of 0.029 at a
missingness ratio of 0.9). Notably, twoWilcox demonstrated signif-
icantly lower FPR compared to ModT, with the maximum reduc-
tion of 82.0% observed at missingness ratios of 0.9. Conversely,
except for the Wilcoxon test at a missingness ratio of 0.9, the
discrepancy in pAUROC between the method exhibiting the lowest
FPR and ModT typically exceeded that of twoWilcox (with the min-
imum difference of 0.097). This conclusion remained consistent
across smaller sample sizes (Fig. 5C and Supplementary Fig. S3),
where in some scenarios twoWilcoxon itself was the method with
the lowest FPR. If considering AUPRC as the metric, twoWilcox
showed higher AUPRC compared to ModT exceptin a large sample
size >80 with a low missingness ratio <0.7 (Fig. 5B).

In summary, after comprehensive consideration of sensitivity
in detection and control of false positives, ModT was recom-
mended for scenarios with large sample sizes (>80) and low miss-
ingness ratios (<0.7). In contrast, twoWilcox proved more suitable
in cases with large sample sizes but higher missingness ratios,
or smaller sample sizes with relatively low missingness ratios.
However, for the extreme cases in metaproteomic studies involv-
ing both small sample sizes and exceptionally high missingness
ratios, the differential analysis results warranted a more cautious
interpretation, as none of the evaluated methods achieved reliable
performance.

Efficiency was another important factor affecting the choice of
strategy. The running time of different statistical methods varied
dramatically in the simulation (Fig. 6). For a simulated dataset
with 200 samples and 10 000 features, the fastest ModT took only
0.58 s on average to complete a round of tests. TwoWilcox took
~5 s on average. The slowest RF imputation took ~3214 s, making
it challenging to be applied in high-dimensional data. DASEV, SDA,
and Mixture all require iterative procedures to find maximum
likelihood estimates for model parameters, so they are more
time-consuming than the other imputation-free methods. The
limitation of R scripts to single-thread execution also contributes
to the reduced efficiency of certain methods.

Discussion

Targeting differential abundance analysis of proteins in metapro-
teomics, we assessed the performance of five imputation meth-
ods and six imputation-free methods in metaproteomic datasets
with 588 combinations of simulation parameters. Our results
showed data imputation performed poorly in scenarios of high

missingness ratio and large sample size, in which KNN, bPCA, and
RF imputation showed high FPR in the test results. Overall, based
on the balance between pAUROC, AUPRC, FPR, and computational
efficiency, we recommend ModT in scenarios of large sample size
with low missingness ratio, and twoWilcox in scenarios of small
sample size with low missingness ratio or large sample size with
high missingness ratio.

Proteomics data are typically close to normally distributed
after logarithm transformation and/or normalization [40]. Our
simulation datasets were generated with Log-normal distribu-
tions, consistent with Ding et al.’'s phosphoproteomics simulation
framework [29]. No consensus conclusions have been established
on the mechanism of missing values in MS data. The recent
protDP model for predicting missingness ratio based on protein
intensity did not fit well in the ProteoCardis dataset with a high
missing value ratio (Supplementary Fig. S1B) [17]. We inferred that
it is difficult to fit the intensity and detection probability with
a simple logistic regression in metaproteomic datasets such as
Proteocardis, as more complex and diverse proteins originating
from dynamic microbiomes are detected and more confounding
factors could be included. Therefore, we generated missing values
with different ratios and different compositions of MNAR and
MCAR following Lazar et al. [14].

There has been a huge debate about whether data imputa-
tion should be applied to proteomic datasets containing missing
values. Some researchers argue that missing value imputation
should be applied with caution to MS data. For example, Li and
Smyth observed that imputation performed poorly in proteomics
data of sample size 12 and missing values generated by protDP,
either reducing statistical power or increasing the false discovery
rate to unacceptable levels [17]. However, they did not validate it
on a larger dataset. Ooijen et al. found that imputation increased
sensitivity with the cost of a much higher FDR in peptide-level pro-
teomics [26]. Conversely, other studies have found that imputation
methods outperform imputation-free methods. Wang et al. discov-
ered that imputation could enhance the performance of differen-
tial analysis when coupled with appropriate statistical methods in
proteomics [27]. On isobaric-labeled proteomics datasets, Bramer
et al. found that imputation performed better except in small
sample sizes and high missingness ratio [28]. But the maximum
missingness ratio was 50% in their simulation, which is lower
than our metaproteomic data. Taylor et al. reported that RF and
KNN imputation yielded the best performance in statistical test-
ing for up to 50% missingness in simulated metabolomics data.
None of the imputation-free methods they assessed consistently
outperformed the imputation methods [18]. We designed our
experiments based on the method selection of Taylor et al. and
incorporated ModT and SDA into the imputation-free methods.
Our evaluations revealed that at a small sample size and low
MNAR ratio, T_KNN achieved a pAUROC higher than that of
imputation-free methods, except for ModT in DIA_LMiss. This is
partially consistent with the conclusions of Taylor et al. However,
imputation methods performed poorly and resulted in high FPR
at the high missingness ratio, aligning with the findings of Li and
Smyth, and Ooijen et al. We speculated that the discrepancies with
Taylor et al.’s conclusions may arise from variations in simulation
methods or dataset characteristics. The metabolomics datasets
referenced by Taylor et al. have smaller data dimensions and lower
missingness ratios compared to our metaproteomic data. Their
procedures to generate simulated data involved randomly shuf-
fling samples without missing data to produce non-differentiated
data, subsequently introducing data differences and missing val-
ues. This process preserved the intrinsic correlation structure
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Figure S. Performance of statistical methods in broad scenarios. (A, B) statistical methods with the highest average pAUROC and AUPRC across scenarios
with varying sample sizes and missingness ratios. The pAUROC and AUPRC values from 100 rounds of simulations across different MNAR ratios and fold
changes were averaged. The color in each grid represents the method with the highest pAUROC and AUPRC in the given scenario, with the corresponding
value labeled. (C, D) comparisons of twoWilcox with the methods yielding the highest average pAUROC and AUPRC, and lowest FPR in scenarios with
sample sizes of 40 and 100. The boxplots represent the overall distribution of metrics across different MNAR ratios and fold changes, while the average
metric was shown as the red diamond mark. Different methods are represented by different colors. See Supplementary Fig. S5 for comparisons of other

sample sizes.

among compound intensities, which could be leveraged by cer-
tain imputation methods (e.g. kNN, RF, and bPCA) to achieve
superior performance [41]. In contrast, our simulated datasets
were designed to mirror the scale and missing value patterns
observed in real data but were generated under the assumption
of independence among proteins.

After evaluation, we found that ModT achieved the highest
PAUROC in broad scenarios of metaproteomics. It employs empir-
ical Bayes-moderated statistics, which regularize the variance
of the t-test statistic based on Bayesian shrinkage estimation
and improve power [31]. Ooijen et al. claimed that ModT with
no imputation outperformed halfLocal, random tail, and multiple
imputation in peptide-level proteomics [26]. TwoWilcox

demonstrated comparable pAUROC, higher AUPRC in a sample
size smaller than 80 or a large sample size with a high
missingness ratio, and superior control over false positives. The
two-part statistical test is proposed for the semicontinuous
data. TwoWilcox contains a binomial test for zero parts and a
nonparametric Wilcoxon test for nonzero parts and combines
the strengths of statistical tests for continuous data and the
consideration of zero parts [21, 32]. The two-part models have
been evaluated and applied in microbiome analysis of other
‘omics. Wagner et al. demonstrated that the two-part statistic
outperforms the t-test and Wilcoxon test in identifying taxa
differences between groups in microbial ecology studies due to its
ability to handle sequence data with a large proportion of zeros
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Figure 6. Execution time of statistical methods. The boxplots represent the execution time for each method across 100 simulation rounds with a sample

size of 200, a missingness ratio of 0.7, and MNAR ratios of 0.2, 0.4, 0.6, and 0.8.

and non-negative skewed counts [42]. In Cho et al.’s evaluation
of metatranscriptomic data, the two-part method also exhibited
good control of false positives and high sensitivity, especially
in large samples and small sample sizes with a missingness
ratio < 0.9 [43].

This study is subject to certain limitations. Our simulation
was targeted at the currently widely adopted label-free metapro-
teomics data. However, our simulated dataset did not take into
account other metaproteomic experimental platforms and tech-
nologies, such as isobaric-labeled metaproteomics and proteomic
microarray. The characterization of missing values in such experi-
mental data may be different from that in label-free experiments.
This distinction could be considered in further studies.

Key Points

e We assessed the performance of five imputation meth-
ods and six imputation-free methods in simulated
metaproteomic datasets with 588 different scenarios of
sample size, fold change between case and control, and
missing value ratio at random and nonrandom.

e Compared to imputation-free methods, k-nearest neigh-
bors, Bayesian principal component analysis, and ran-
dom forest imputation performed poorly in datasets
with a high missingness ratio and a large sample size
and resulted in a high false-positive risk.

* Considering the balance of sensitivity in analysis and
control of false positives, the moderated t-test is optimal
in scenarios of large sample size with a low missingness
ratio. The two-part Wilcoxon test is recommended in
scenarios of small sample size with a low missingness
ratio or large sample size with a high missingness ratio.
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