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AI-Driven De Novo Design of Ultra Long-Acting GLP-1
Receptor Agonists

Ting Wei, Jiating Ma, Xiaochen Cui, Jiahui Lin, Zhuoqi Zheng, Liu Cheng, Taiying Cui,
Xiaoqian Lin, Junjie Zhu, Xuyang Ran, Xiaokun Hong, Luke Johnston, Zhangsheng Yu,*
and Haifeng Chen*

Peptide drugs have revolutionized modern therapeutics, offering novel
treatment avenues for various diseases. Nevertheless, low design efficacy,
time consumption, and high cost still hinder peptide drug design and
discovery. Here, an efficient approach that integrates deep learning-based
protein design with functional screening is presented, enabling the rapid
design of biotechnologically important peptides with improved stability and
efficacy. 10,000 de novo glucagon-like peptide-1 receptor agonists (GLP-1RAs)
are designed, 60 of these satisfied the stability, efficacy, and diversity criteria
in the virtual functional screening. In vitro validations reveal a 52% success
rate, and in vivo experiments demonstrate that two lead GLP-1RAs (D13 and
D41) exhibit extended half-lives, approximately three times longer than that of
Semaglutide. In diabetic mouse models, candidate D13 results in significantly
lower blood glucose levels than Semaglutide. In the obesity mouse model,
D13 induces weight loss efficacy comparable to that of Semaglutide. The
AI-driven peptide design pipeline—which integrates protein design,
functional screening, and experimental validation—reduces the number of
iterations required to find novel peptide candidates. The entire process, from
design to screening, can be completed in a single cycle within two weeks.
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1. Introduction

Peptides are emerging as a crucial class
of therapeutics due to their high target
specificity, strong biological activity, and
safety.[1] Their clinical applications span on-
cology, metabolic disorders, infectious dis-
eases, and neurological conditions.[1] The
global peptide therapeutics market size was
estimated at USD 49.13 billion in 2024 and
is predicted to reach around USD 83.75 bil-
lion by 2034.[2] Despite the expanding ap-
plication of peptides in biomedical fields,
peptide drugs face challenges such as poor
metabolic stability, short plasma half-life,
and rapid proteolytic degradation.[3]

Recently, deep learning-based protein de-
sign methods have emerged as powerful
tools for generating de novo proteins with
desirable properties, such as remarkable
thermal stability[4] and high activity.[5–7]

Similar AI-based strategies are now ac-
celerating peptide drug discovery.[8] For
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Figure 1. Workflow of the deep learning-based peptide design, functional screening, and experimental validation pipeline. This workflow includes de
novo GLP-1RAs design, computational screening, and experimental validation through in vitro and in vivo studies.

example, a unimolecular GCGR/GLP-1R dual agonist model has
been developed to design molecules with enhanced receptor
activation in vitro,[9] and the diffusion model HelixDiff[10] has
been used to design a GLP-1 analogue demonstrating GLP-1R
activation in vitro. Computational methods have also been ap-
plied to design G protein-coupled receptors (GPCRs) agonists
and antagonists with high affinity, potency, and selectivity in
vitro.[11] EvoBind[12] has designed cyclic peptide agonists tar-
geting GCGR/GLP-1R in vitro. Furthermore, computational ap-
proaches have been utilized to design peptide inhibitors target-
ing 𝛽-catenin,[13] NF-𝜅B,[13] and IL-23R,[14] and IL-17.[14] Mean-
while, in antimicrobial peptides (AMPs) research, deep learn-
ing methods such as AMP-Designer[15] and TransSAFP[16] have
been developed to design AMPs with broad-spectrum activity
and self-assembling capabilities in vivo. However, most reported
AI-generated peptides have only been validated in vitro,[9–12,16–18]

and rigorous in vivo benchmarks against best-in-class drugs are
still scarce,[14,15,19] creating an urgent need for in vivo studies to
demonstrate true clinical potential.
In parallel with design algorithms, efficient functional screen-

ing also plays a crucial role in modern drug discovery, narrowing
millions of designed proteins to a tractable set for experimen-
tal assays. Coupling deep learning-based protein design method
with functional screening has markedly accelerated enzyme en-
gineering, such as serine hydrolases,[6] myoglobin,[20] and to-
bacco etch virus (TEV) protease.[7] This two-step design pipeline
has significantly improved the accuracy and efficiency of pro-
tein design while reducing time and costs associated with tra-

ditional methods. Compared to enzyme design, peptide design
presents unique challenges, as peptides are susceptible to pro-
teolytic degradation and metabolic instability, necessitating opti-
mization of plasma half-life and biological activity. Here, we in-
tegrate deep learning-based protein design with efficient com-
putational screening to successfully design promising peptide
candidates with high stability, specificity, and efficacy in vivo
(Figure 1). We first used ProteinMPNN[21] for protein design,
which has been successfully applied in previous studies to engi-
neer proteins with enhanced stabilities and target-binding affini-
ties. We then narrowed down the designed peptides for experi-
mental assay based on stability, efficacy, and diversity screening.
Stability is evaluated through enzymatic degradation, helicity, iso-
electric point, and hydrophobicity. Efficacy is assessed by fold-
ing ability and binding affinity with molecular dynamics (MD)
simulation. The diversity reduced sequence similarity to existing
market drugs (to avoid potential intellectual property conflicts)
while maximizing variability among the designed sequences to
increase the likelihood of experimental success.
We demonstrate the effectiveness of our two-step peptide de-

sign method by designing GLP-1RAs.[22] The designed GLP-
1RAs have enhanced biological properties, such as extended
half-life, lower blood glucose, and weight loss effects in the
mouse models. GLP-1RAs have gained significant attention for
their efficacy in managing type 2 diabetes mellitus (T2DM),[23,24]

obesit,[23,24] and mental health disorders.[25] GLP-1 RA drugs
have been developed from daily formulations to weekly formu-
lations. The currently approved long-acting GLP-1RA includes
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once weekly Exenatide,[26] Dulaglutide,[27] and Semaglutide.[27]

Current research focuses on developing ultra-long-acting GLP-
1RA with extended half-life and better efficacy.[28] Ultra-long-
acting GLP-1RAs have the advantage of reduced dosing fre-
quency, ease of use, and better safety profiles.[29–32]

Our two-step peptide design pipeline combines deep learning-
based protein design with computational screening to efficiently
design de novo peptides with improved activity, stability, and ef-
ficacy. We employed ProteinMPNN for designing 10,000 novel
GLP-1RAs, of which 60 passed the functional screening based
on stability, efficacy, and diversity criteria. Notably, we success-
fully designed a GLP-1RA with a half-life approximately three
times longer than Semaglutide and demonstrated superior effi-
cacy compared to Semaglutide in diabetic nephropathy and obe-
sity. Engineering newGLP-1RAwith extended half-life and better
efficacy requires a time-consuming and expensive iterative cycle
of design-make-test-analyse (DMTA).[33] Our pipeline integrates
AI-powered, high-throughput protein design with efficient func-
tional screening, enabling the successful design of de novo GLP-
1RA candidates in a single cycle lasting approximately two weeks.

2. Results

Figure 1 provides an overview of the deep learning based pep-
tide design pipeline, seamlessly integrating efficient functional
screening and experimental validation to enable the rapid design
of promising peptide candidates with extended half-life and en-
hanced efficacy. Using GLP-1RAs as a case study, we successfully
designed 60 de novo GLP-1RAs with improved stability, speci-
ficity, and efficacy within two weeks. Among these, three candi-
dates underwent in vivo validation, revealing a half-life approx-
imately three times longer than Semaglutide and improved ef-
ficacy in glucose-lowering and weight loss. The entire process,
from design to validation, was concluded in a single cycle.

2.1. De novo GLP-1RAs Design

Our de novo GLP-1 RAs design pipeline consists of two primary
stages: conserved sites analysis and ProteinMPNN de novo se-
quences design. Initially, we defined conserved sites or hotspot
residues of GLP-1RAs as critical functions for target recognition,
binding, and activation of the GLP-1R. 13 residue points (7H,
8Aib, 9E, 10G, 11T, 12F, 13T, 14S, 15D, 17S, 26K, 34R, 37G)
were selected based on conservation analysis and referenced to
Semaglutide. Semaglutide is a modified form of GLP-1 (7–37),
with a total length of 31 amino acids. Residues 7H, 9E, 10G,
11T, 12F, 13T, 14S, 15D, 17S are highly conserved in GLP-1 ana-
logues (Figure S1, Supporting Information) and play key roles
in interacting with the GLP-1 receptor’s transmembrane core.[10]

8Aib and 26K are two modification sites specific to Semaglu-
tide. Residue 34K in GLP-1 is substituted with arginine (34R) in
Semaglutide. GLP-1 exists in two active forms: GLP-1(7-36)-NH2
and GLP-1(7–37), Gly37 was used as the C-terminal residue in
our design.
We used the experimentally determined crystal structure of

the Semaglutide-GLP-1R complex (PDB 7KI0) as the template for
our design. We fixed 13 conserved sites and then used Protein-
MPNN to design the remaining 18 sites, and generated 10,000

de novo GLP-1RAs sequences. ProteinMPNN, a deep learning
method for protein complex design, has been successfully de-
ployed in previous studies to engineer proteins,[5,18,20,23,34–36]

such as ubiquitin,[5] protein nanomaterials,[34] myoglobin,[20]

TEV protease,[23] peptide PROTAC drug,[35] binders against
Keap1/Nrf2.[18,36] In this study, we extend its application to pep-
tide design.

2.2. Functional Screening

High-throughput computational screening is an efficientmethod
for narrowing down designed peptides, identifying promising
drug candidates with desirable properties, and accelerating the
drug discovery process. The 10,000 designed GLP-1RAs under-
went virtual screening based on stability, efficacy, and diversity
criteria. Finally, 60 peptides with desirable properties, including
extended biological half-life, high binding affinity, and greater di-
versity compared to Semaglutide, were selected for in vitro and
in vivo validation (Figure 2A; Figures S2 and S7, Supporting In-
formation).
Peptide drugs are susceptible to degradation by digestive en-

zymes, resulting in poor stability and a short plasma half-life.
Studies indicated that NEP-24.11 can cleave GLP-1RAs at six po-
tential cleavage sites in the central and C-terminal regions.[37] To
improve stability and extend the half-life of the designed GLP-
1RAs, sequences containing these cleavage sites were filtered out.
Additionally, factors such as helicity, isoelectric point, and hy-
drophobicity impact the peptide potency,[9,38] we further filter the
designedGLP-1RAs based on the net charge, hydrophobicity, and
spatial aggregation propensity (SAP) score (seeMethods section).
Binding ability to the receptor is closely associated with effi-

cacy, and was evaluated using the folding ability of the complex
structure and MD simulations. AlphaFold2 was used to predict
the complex structures of the designed GLP-1RA sequences and
GLP-1R. The folding capability of the designed GLP-1RAs were
assessed using several key parameters: The predicted Local Dis-
tance Difference Test (pLDDT) scores, which evaluate the quality
of the predicted protein structure; the TM-score and Root Mean
Square Deviation (RMSD), which assess how well the designed
structure aligns with the native structure; and the interface pAE,
which evaluates the confidence in the interactions at the interface
between GLP-1RA and GLP-1R in the complex. MD simulations
provided insights into the binding affinity, which measures the
binding strength between GLP-1RA and GLP-1R.
Sequence diversity was considered from two perspectives.

First, diversity relative to the marketed drug was incorporated to
avoid potential intellectual property conflicts. The similarity be-
tween designed sequences and the approved drug remained be-
low the threshold defined by relevant patents. Patent avoidance
is a critical consideration for pharmaceutical companies. Second,
diversity among the designed peptides was incorporated to in-
crease the likelihood of experimental success. More variability
of designed sequences could cover a broader range of the se-
quence space landscape. This strategy increases the likelihood
of identifying functional candidates. If one sequence fails in ex-
perimental validation, a highly similar sequence is likely to en-
counter the same issue. Phylogenetic trees were generated to cat-
egorize sequences, and a single representative sequence was se-
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Figure 2. In vitro Functional Screening of GLP-1RAs. A) the number of GLP-1RAs after computational screenings. B) the number of successful and failed
sequences at each in vitro screening step: GST pulldown assay, SPR, and cAMP accumulation assay. C) binding affinity of GLP-1RAs assessed by SPR
at six or eight concentrations in a single run. D) the cAMP dose-response curves for GLP-1RAs were measured in HEK-293 cells expressing the cloned
human GLP-1R. Data represent means ± SD of two independent experiments performed in ten concentrations. E) the 50% activity concentration (EC50).

lected in each phylogenetic cluster. Finally, a set of 60 unique
GLP-1RA sequences was selected for subsequent experimental
evaluation.

2.3. In Vitro Experimental Validation

We performed in vitro functional screening of 60 unique GLP-
1RA sequences using a combination of GST pulldown assay, sur-
face plasmon resonance (SPR), and intracellular cyclic adenosine
monophosphate cAMP accumulation assay (Figure 2B; Figure
S2, Supporting Information). The GST pulldown assay served
as an effective preliminary screening, revealing 31 sequences
that could bind to GLP-1R. Subsequent SPR analysis further
evaluated the binding affinity of these sequences, with 6 GLP-
1RAs demonstrating binding affinities comparable to Semaglu-
tide. Finally, the cAMP assay assessed the functional activa-
tion of GLP-1R, revealing that three GLP-1RAs (D13, D41, and

D44) could activate cAMP signaling. The number of successful
and failed GLP-1RAs at each screening step is summarized in
Figure 2B.
The GST pulldown assay qualitatively evaluated the binding

capability of GST-peptide fusion proteins to GLP-1R, providing
a qualitative measure of receptor interaction. SDS-PAGE images
were shown in Figures S4 and S5 (Supporting Information), and
Semaglutide-GLP-1R was used as a positive control. This assay
identified 31 GLP-1RAs capable of binding to GLP-1R, while the
remaining 29 sequences failed to show interaction (Figure 2B and
Table 1).
SPR was utilized as the next screening step to quantita-

tively assess the binding affinity between the GST-fusion pep-
tides and GLP-1R. Of the 31 GLP-1RAs that passed the GST
pulldown assay, 13 underwent SPR analysis (Figure 2B and
Table 1). The dissociation constant (KD) for GLP-1 (Semaglu-
tide peptide) binding to GLP-1R was 2.78 × 10−6 m. Among
these, 6 GLP-1RAs (D03, D04, D13, D23, D41, and D44) ex-
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Table 1. The GLP-1 RAs at each in vitro and in vivo step.

ID Sequence
Recovery

Biosynthesis Chemical Synthesis

Pulldown SPR cAMP PK PD

Label Relative Expression KD [m] Label EC50 [nm] T1/2 [h] Indication

Semaglutide
1 Success 2.78E-06 Success 0.019 8.17±0.29 Diabetes, Obesity

D02 0.77 Success 0.95

D03 0.68 Success 0.86 7.83E-06 Success

D04 0.71 Success 0.91 7.73E-06 Success

D05 0.68 Fail

D06 0.71 Fail

D07 0.71 Fail

D08 0.74 Success 0.77 8.97E-05 Fail

D09 0.71 Success 0.84 NA Fail

D10 0.74 Fail

D11 0.68 Success 0.80 1.12E-05 Fail

D12 0.68 Fail

D13 0.81 Success 0.87 8.58E-06 Success 0.036 19.86±1.55 Diabetes, Obesity

D14 0.74 Success 0.85 6.61E-05 Fail

D15 0.74 Fail

D16 0.71 Success 0.79

D17 0.74 Fail

D18 0.71 Fail

D19 0.71 Success 0.67

D20 0.74 Success 0.98

D21 0.68 Success 0.86

D22 0.74 Success 0.80

D23 0.71 Success 1.11 8.32E-06 Success

D24 0.71 Success 0.88

D25 0.74 Success 0.93

D26 0.74 Fail

D27 0.71 Fail

D28 0.77 Fail

D29 0.65 Fail

D30 0.65 Fail

D31 0.71 Success 0.87 4.79E-05 Fail

D32 0.74 Fail

D33 0.71 Success 0.82

D34 0.68 Fail

D35 0.71 Success 0.65

D36 0.68 Fail

D37 0.74 Success 0.74

D38 0.71 Fail

D39 0.71 Success 0.72 1.08E-04 Fail

D40 0.65 Fail

D41 0.74 Success 0.71 5.19E-06 Success 0.011 23.16±3.69 Diabetes, Obesity

D42 0.68 Success 0.72

D43 0.74 Fail

D44 0.68 Success 0.76 6.78E-06 Success 0.012 4.19±0.37 Diabetes, Obesity

(Continued)
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Table 1. (Continued)

ID Sequence
Recovery

Biosynthesis Chemical Synthesis

Pulldown SPR cAMP PK PD

Label Relative Expression KD [m] Label EC50 [nm] T1/2 [h] Indication

D45 0.68 Fail

D46 0.65 Fail

D47 0.74 Fail

D48 0.74 Fail

D49 0.74 Success 0.70

D50 0.68 Success 0.63

D51 0.68 Success 0.73 NA Fail

D52 0.74 Fail

D53 0.71 Fail

D54 0.68 Fail

D55 0.65 Fail

D56 0.77 Success 0.73

D57 0.74 Success 0.55

D58 0.68 Fail

D59 0.74 Success 0.65

D60 0.71 Success 0.77

D61 0.71 Fail

hibited binding affinities comparable to GLP-1, with KD val-
ues on the order of 10−6 (Figure 2C; Figure S6, Supporting
Information).
cAMP accumulation assay evaluated the functional activity

of the GLP-1RAs by measuring their ability to elicit cAMP
signaling, a key downstream response of GLP-1R activation.
Among the six GLP-1RAs that passed the SPR analysis, three
(D13, D41, and D44) underwent cAMP accumulation assay
(Figure 2D and Table 1). D41 and D44 exhibited superior cAMP
signaling, with half-maximal effective concentrations (EC50) of
0.011 and 0.012 nm, respectively, compared to Semaglutide’s
0.019 nm (Figure 2E). D13, with an EC50 of 0.036 nm, demon-
strated similar cAMP signaling. These results indicated that all
three GLP-1RAs could effectively activate intracellular cAMP
signaling.
GST pulldown assay, SPR assay, and intracellular cAMP accu-

mulation assay identified three GLP-1RA candidates (D13, D41,
D44) with strong receptor binding and effective functional activ-
ity, making them suitable for further in vivo experimental evalu-
ation.

2.4. Extended Half-Life of GLP-1RAs in Pharmacokinetics (PK)

Pharmacokinetics (PK) refers to the study of a drug’s absorp-
tion, distribution, metabolism, and excretion (ADME) within the
body. Among the three GLP-1RA candidates, D13 and D41 ex-
hibited significantly longer half-lives compared to Semaglutide
in SD rats. Specifically, D13 exhibited a half-life (T1/2) of 19.86 h,
≈2.43 times longer than Semaglutide’s 8.17 h. Similarly, D41 dis-
played a prolonged T1/2 of 23.16 h, 2.83 times that of Semaglutide
(Figure 3A,B; Table S4, Supporting Information).

D13 also achieved a maximum plasma concentration (Cmax)
of 353.96 ng mL−1, which is higher than Semaglutide’s Cmax of
329.82 ng mL−1 (Figure 3C). The area under the concentration-
time curve (AUC0-t), representing the total drug exposure over
0–168 h, was ≈2.1 times (D13 is 15939.88 h*ng mL−1 and D41 is
15737.19 h*ng mL−1) higher than that of Semaglutide’s 7538.16
h*ng mL−1 (Figure 3D). AUC0-∞, representing the total drug ex-
posure over 0-infinite time, was also higher forD13 andD41 com-
pared to Semaglutide (Figure 3E).
The time to maximum concentration (Tmax) was 10.67 h for

D13 and 12 h for D41, both longer than Semaglutide’s 8.17
h (Figure 3F). The mean residence time (MRT0-t), indicating
the average duration for the drug to remain in the body be-
fore elimination within 0–168 h, was 32.02 h for D13 and 38.79
h for D41, ≈2.3 and 2.7 times that of Semaglutide (14.21 h)
(Figure 3G). Similarly, MRT0-∞, representing the average dura-
tion for the drug to remain in the body before complete elimina-
tion, was higher for both D13 and D41 compared to Semaglutide
(Figure 3H).
The D13, D41, and D44 are conjugated with a C20 fatty

acid chain, whereas Semaglutide contains a C18 fatty acid
chain (Table S1, Supporting Information). According to a
study by Novo Nordisk,[39] Semaglutide with a C18 fatty acid
chain exhibits a half-life of ≈7–8 h in rats, consistent with
our observations. The Semaglutide analogue containing a C20
fatty acid chain demonstrates extended half-lives of ≈9–10 h.
Notably, our designed D13 and D41, both conjugated with
C20 fatty acid chains, exhibit significantly longer half-lives of
19.86 and 23.16 h, respectively. While the fatty acid chain
contributes to increased half-life, our data also suggest that
the peptide sequence plays a major role in extended half-
life.
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Figure 3. The PK result in rates (Mean ± SD, n=3). A) The drug plasma concentration-time curve for Semaglutide (0.05 mg kg−1), D13 (0.05 mg kg−1),
D41 (0.05 mg kg−1), and D44 (0.05 mg kg−1). B) half-life (T1/2). C) the maximum plasma concentration (Cmax). D,E) the area under the concentration-
time curve of AUC0-168 hours and AUC0-∞. F) time to Maximum Concentration (Tmax). G,H) The mean residence time of MRT0-168hours and MRT0-∞. Data
were analyzed with the two-sided Student’s unpaired t test. *p < 0.05, **p < 0.01, ***p < 0.001.

2.5. Lower Blood Glucose Levels of GLP-1RAs in Diabetic
Nephropathy

The hypoglycemic effect of the GLP-1RAs was evaluated in the
diabetic db/db mouse model. GLP-1RAs were administered sub-
cutaneously either as a single dose or as multiple doses for 28
days (10 nmol/kg administered once daily).[29] The hypoglycemic
effect of a single dose focused on the acute reduction in blood
glucose levels. This analysis provides valuable insights into the

time-effect relationship, which is compared with the PK results.
The hypoglycemic effect of multiple doses primarily examines
the long-term effects of glucose-lowering and the cumulative im-
pacts.
We evaluate the acute glucose-lowering effect of a single

dose of D13, D41, and D44 in the diabetic db/db mouse
model. Non-fasting glucose level was monitored at time-
points of 0, 0.5, 1, 2, 4, 8, 24, 48, 72, 96, 120 h. We ob-
served that D13, D41, D44, and Semaglutide produced signif-
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icant glucose-lowering effects compared to the model group
(Figure 4A–C).
In the Semaglutide (10 nmol kg−1) group, non-fasting blood

glucose levels began to decrease at 0.5 h after administration
and remained reduced until 24 h. Blood glucose levels reached
their lowest point between 8 and 24 h and returned to baseline
(model group levels) by 48 h (Figure 4A,B). In the D13 group,
non-fasting blood glucose levels began decreasing at 0.5 h post-
administration and persisted for up to 96 h. Blood glucose levels
reached their lowest point between 24 and 72 h, returning to near
baseline levels by 96 h (Figure 4A,C). The lowest blood glucose
level in the D13 group (15.53 ± 8.06 mmol L−1) was compara-
ble to that of the Semaglutide group (15.57 ± 5.16 mmol L−1).
Notably, non-fasting glucose levels after 24 h of administration
in the D13 group were significantly reduced compared with the
Semaglutide group at three time points, with P-values of 0.0002,
0.0002, 0.1694, 0.0436 at 48, 72, 96, 120 h, respectively. The D41
group has a similar effect to the D13 group, blood glucose lev-
els reached their lowest point between 8 and 48 h (20.6 ± 4.37
mmol L−1), returning to near baseline levels by 96 h.
D13 exhibits a lower drug plasma concentration than Semaglu-

tide within the first 8 hours, which likely accounts for its
weaker glucose-lowering efficacy during this early period (0–8h)
(Figure 3A). However, from 8 to 24 h, the drug plasma concen-
tration of Semaglutide rapidly declines, the drug plasma concen-
tration of D13 continues to increase, andmaintains a higher con-
centration compared to Semaglutide. These findingswere consis-
tent with the PKdata, suggesting that D13may provide prolonged
glucose control compared to Semaglutide, making it a promising
candidate for sustained blood glucose management in T2DM.
To evaluate the long-term glucose-lowering, D13, D41, and

D44 were administered subcutaneously over 28 days (every day
for 28 days) in the diabetic db/db mouse model. At the end of
the 28 days, non-fasting glucose was monitored at timepoints
of 0, 0.5, 1, 2, 4, 8, 24, 48, 72, 96, and 120 h. In the D13 group
(10 nmol kg−1), non-fasting blood glucose levels in db/db mice
began decreasing at 0.5 h post-administration and persisted for
up to 96 h. The lowest blood glucose level in the D13 group
(24.00 ± 4.24mmol L−1) was lower than that of the Semaglutide
group (24.68 ± 3.34 mmol L−1). Notably, the blood glucose af-
ter 8 h in the D13 group was significantly reduced compared
with the Semaglutide group at four time points, with P-values
of 0.0081, 0.0016, 0.0047, 0.028 at 24, 48, 72, 96 h, respectively.
(Figure 4D–F). This may be attributed to the dose accumulation
effect of D13, given its longer half-life and higher Cmax. A sim-
ilar effect was observed in the D41 group, where the blood glu-
cose was significantly lower than the Semaglutide group after 8
h, with P-values of 0.04, 0.0017, 0.0012, 0.04 at 24, 48, 72, 96 h,
respectively (Figure 4D–F).
After 28 days of continuous administration, 4-hour fasting

blood glucose levels weremeasured once a week. The 4-hour fast-
ing blood glucose of theD13 groupwas also lower than that in the
Semaglutide group, with no statistical significance (Figure 4G).
The intraperitoneal glucose tolerance test (iPGTT) was per-

formed 120 h after multiple doses. Blood glucose was mea-
sured at 10, 30, 60, 120, and 180 min after glucose load-
ing. Semaglutide, D13, D41, and D44 demonstrated improved
glucose tolerance during 0–180 min (Figure 4H). D13 exhib-
ited slightly greater efficacy than Semaglutide, though the dif-

ference was not statistically significant. The AUC0-180min for
D13 (2725.75±491.03 mmol L*min−1) was lower than that of
Semaglutide’s 3414±1105.75mmol/L*min, indicating enhanced
glucose tolerance (Figure 4I).
Further investigation into renal protection revealed that

Semaglutide and D13 significantly reducedmarkers of kidney in-
jury in db/dbmice, including blood urea nitrogen (BUN), serum
creatinine (Scr), and urinary albumin levels, while concurrently
increasing urinary creatinine levels (Figure 4J–M).

2.6. Weight Loss of GLP-1RAs in Obesity

To assess the weight loss efficacy of GLP-1RAs, diet-induced
obese (DIO) mice were administered GLP-1RAs and Semaglu-
tide at 10 nmol kg−1.[40] DIO mice exhibited a decrease in body
weight during treatment with D13, D41, and D44. D13, D41, and
D44 resulted in body weight reductions of 19.25%, 14.42%, and
16.46%, respectively, while semaglutide led to a 21.54% reduc-
tion (Figure 5A). The weight loss efficacy of D13 was comparable
to that of semaglutide, with no significant difference between the
two treatments. These data demonstrate the effectiveness of D13
in reducing body weight in DIO mice.
The 4-hour fasting blood glucose in DIO mice decreased in

Semaglutide, D13, D41, and D44 groups, with D13 and D44
showing slightly lower levels than the Semaglutide group, though
the difference was not statistically significant (P-value >0.5)
(Figure 5B). Semaglutide, D13, D41, and D44 groups exhibited
reduced liver and fat index (Figure 5C,D). Serum LDL-C in DIO
mice was significantly reduced in the Semaglutide, D13, D41,
and D44 (Figure 5E). While serum TC showed a decreasing trend
in the Semaglutide, D13, D41, and D44, the difference was not
statistically significant (Figure 5F).

2.7. Sequence and Structure Analysis of GLP-1RAs

To gain insights into the sequence and structural characteristics
of GLP-1RAs associated with longer half-life and improved effi-
cacy, we performed a comprehensive analysis of sequence, struc-
ture, and evolutionary relationships. Our goal was to offer addi-
tional design principles for developing more effective GLP-1RAs
with prolonged half-life and improved efficacy.
We first examined sequence differences between successful

and failed GLP-1RAs in GST pulldown and SPR assays. Inter-
estingly, no significant differences were observed in the recovery
and diversity distributions between successful and failed groups
(Figure 6A). These metrics, which are critical in AI-based protein
sequence design, suggest that factors beyond sequence recovery
and diversity influence the success of GLP-1RAs.
To further explore the structural basis of GLP-1RA, we used

AlphaFold2 to predict the complex structure of GLP-1RA and
GLP-1R (Figure 6B). We used the fixed-backbone design strat-
egy, leading to the designed peptides characterized by a con-
served 𝛼-helix structure. While the 𝛼-helix structure is common
in many GLP-1R agonists, recent studies—such as the Evobind
platform—have demonstrated that cyclic peptides could activate
GLP-1R and GCGR.[12] This suggests that the 𝛼-helix structure is
not universally conserved, and its necessity for GLP-1R activation
warrants further investigation.
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Figure 4. Glucose-lowering of GLP-1RAs in the Diabetic model (Mean ± SD, n=6). The db/db mice were treated with GLP-1RAs and Semaglutide at 10
nmol kg−1 for a single dose A–C) andmultiple doses D–M). (A) the non-fasting glucose-time curve after a single dose. (B) the area under the non-fasting
glucose-time curve (AUC) after a single dose within 0–48 h (AUC0-48 hour) and (C) within 0–120 h (AUC0-120 hour). (D) the non-fasting glucose-time curve
after multiple doses for 28 days. (E) The area under the non-fasting glucose-time curve after multiple doses within 0–48 h (AUC0-48 hour) and (F) within
0–120 h (AUC0-120 hour). (G) 4-h fasting blood glucose during 28 days continuous administration period. (H) The intraperitoneal glucose tolerance test
(iPGTT) after multiple doses. (I) The area under the iPGTT curve (AUC) with 0–180min after multiple doses. (J–M) kidney injury biomarkers of blood
urea nitrogen (BUN), serum creatinine (Scr), urinary albumin levels, and urinary creatinine levels after multiple administrations. Data were analyzed with
the two-sided Student’s unpaired t test. # Compared with normal group, *compared with model group. #p < 0.05, ##p < 0.01, ###p < 0.001, *p < 0.05,
**p < 0.01, ***p < 0.001.
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Figure 5. Weight loss of GLP-1RAs in the Obesity model (Mean ± SD, n=5). The DIO mice were treated with GLP-1RAs and Semaglutide from 0 to 22
days at 10 nmol kg−1, measuring A) body weight and B) 4-h fasting blood glucose. C) Liver index. D) fat index. E) serum LDL-C. F) serum TC. Data
were analyzed with the two-sided Student’s unpaired t test. # Compared with normal group, *compared with model group, #p < 0.05, ##p < 0.01,
###p < 0.001, *p < 0.05, **p < 0.01, ***p < 0.001.

Furthermore, to understand the evolutionary relationships
among GLP-1RAs, we constructed a phylogenetic tree compris-
ing 60 GLP-1RAs (Figure 6C; Figure S8, Supporting Informa-
tion). Both successful and failed GLP-1RAs were broadly dis-
tributed throughout the tree, indicating no distinct evolution-
ary clustering between the two groups. Notably, the root of the
phylogenetic tree is Semaglutide. D13, which exhibits a longer
half-life and superior efficacy, is positioned close to Semaglu-
tide in the tree, having the smallest phylogenetic distance of 0.19
(Figure S9, Supporting Information) and sequence similarity (re-
covery = 0.81). Additionally, D25 (recovery = 0.74), another GLP-
1RA not yet experimentally validated, is topologically proximity
to Semaglutide. Although D25 was not included in this round
of experimental validation, its sequence recovery and structural
features make it a promising candidate for further exploration.

3. Conclusion

Peptides have emerged as a unique drug class for treating a wide
range of diseases, including diabetes, cancer, and central ner-
vous systemdisorders.However, designing biotechnologically es-
sential peptides requires expensive, time-consuming, and exten-
sive validation. Deep learning-based protein design method has
proven to be a powerful tool for generating novel proteins with

desired properties.[41] Here, we introduce a deep learning-based
peptide design pipeline that combines deep learning protein se-
quence design and efficient functional screening, enabling the
successful design of novel GLP-1RAs with extended half-life and
enhanced efficacy compared to Semaglutide. For GLP-1RAs de-
sign, 10,000 designed sequences were subsequently subjected to
functional screening based on stability, efficacy, and diversity, re-
sulting in a much-reduced number of peptide candidates, ≈60
GLP-1RAs for experimental evaluation.
Using the GST pulldown assay, we identified 31 GLP-1RAs

that interact with GLP-1R. From these candidates, 13 were se-
lected for the SPR assay, of which 6 exhibited binding affini-
ties comparable to Semaglutide. Sequentially, 3 GLP-1RAs (D13,
D41, and D44) underwent evaluation in the cAMP assay. The
EC50 rank was: D41 (0.011 nm) > D44 (0.012 nm) > Semaglutide
(0.019 nm) > D13 (0.036 nm). As only a subset of candidates was
validated, additional GLP-1RAs may also be capable of activating
the cAMP second messenger signaling pathway.
In Pharmacokinetics (PK), both D13 and D41 showed signifi-

cantly improved pharmacokinetic properties relative to Semaglu-
tide, including a longer half-life, extended Tmax, and enhanced
Cmax. These improvements suggest that D13 and D41 may of-
fer prolonged therapeutic effects. The half-life (T1/2) ranking was:
D41 (23.16 h)>D13 (19.86 h)> Semaglutide (8.17 h)>D44 (4.19
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Figure 6. Sequence, structural, and evolutionary analyses of GLP-1RAs. A) sequence analysis: Comparison of recovery and diversity distributions between
successful and failed GLP-1RAs using GST pulldown and SPR assays. B) structural analysis: AlphaFold2-predicted complex structure of GLP-1RA and
GLP-1R. C) evolutionary analysis: Phylogenetic tree of 60 GLP-1RAs constructed to explore evolutionary relationships.

h). The Cmax ranking was: D13 (353.96 ng mL−1) > Semaglu-
tide (329.82 ng mL−1) > D44 (116.60 ng mL−1) > D44 (116.60
ng mL−1). Notably, the in vivo PK findings did not fully correlate
with the cAMP assay results, as D44 exhibited the poorest PK
performance despite favorable cAMP activity.
In diabetic mice with simple administration and multiple ad-

ministration, the hypoglycemic effects of D13 and D41 were no-

tably prolonged compared to Semaglutide. These findings are
consistent with the observed pharmacokinetic data, further sup-
porting that an extended half-life contributes to more durable
blood glucose control. D13 demonstrated significantly lower
blood glucose levels than Semaglutide in both single-dose and
multiple-dose regimens. Weight reduction with D13 was slightly
lower than Semaglutide, but the difference was not statistically
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significant. Efficacy outcomes varied across disease models, in-
dicating that factors such as disease subtype might influence the
treatment response of the same drug. This highlights the impor-
tance of designing GLP-1RAs candidates tailored for specific dis-
eases.
Our AI-powered high-throughput protein design, functional

screening, and experiment validation pipelines provide a promis-
ing way for improving the stability and efficacy of biotechnolog-
ically important peptide drugs. This pipeline has been evaluated
only in GLP-1RAs. We are now designing GLP-1R/GCGR/GIPR
triple agonists and hope that the in vitro experiment will surpass
the performance of Retatrutide.[42]

4. Experimental Section
Design De novo GLP-1RAs: For conserved site analysis, the sequences

of GLP-1RAs marked drugs were collected, including GLP-1, Exenatide,
Lixisenatide, Liraglutide, Semaglutide, and Albiglutide. Clustal X was used
to identify highly conserved sites of GLP-1RAs in multiple sequence align-
ments.

The conserved sites and crystal structure of the Semaglutide-GLP-1R
complex (PDB 7KI0) were used as inputs for ProteinMPNN. To generate
de novoGLP-1RAs, with the GLP-1R chain being fixed and the Semaglutide
chain being selected for optimized sequences. ProteinMPNN was used
to generate 10,000 sequences using the default parameters, including a
sampling temperature of 0.1.

Computational Screening of Designed GLP-1RAs—Stability: Using Pro-
teinMPNN, a total of 10,000 GLP-1RA sequences was generated. Semaglu-
tide, the initial template for the design, consists of 31 amino acids. Of
these, 13 conserved residues were fixed, while the remaining 18 amino
acids were designed by ProteinMPNN. Due to the limited design space
and conserved structural constraints (𝛼-helix), a substantial number of
repetitive sequences were generated during this process. After eliminat-
ing redundant sequences, 1,443 unique sequences were obtained.

In vitro studies revealed that the enzyme NEP-24.11 can cleave GLP-1
at six potential sites in the central and C-terminal regions, with particular
vulnerability between Glu27-Phe28 and Trp31-Leu32, along with additional
cleavage sites at Asp15-Val16, Ser18-Tyr19, Tyr19-Leu20, and Phe28-Ile29.
To improve stability and extend the half-life of the designed GLP-1RAs,
sequences containing these cleavage sites was filtered out.

The net charge, hydrophobicity, and SAP were used to estimate the pro-
tein solubility. The net charge of a protein plays a crucial role in its solubil-
ity. SAP was calculated for each residue based on a combination of solvent
accessibility and hydrophobicity. Hydrophobicity primarily controls the ex-
posure of non-polar residues on the protein surface.

Computational Screening of Designed GLP-1RAs—Efficacy: AlphaFold2
was employed to predict the complex structures of designed GLP-1RA se-
quences and GLP-1R. The best rank structure of each complex was fur-
ther calculated TM-score, RMSD, pLDDT, and interface pAE. TM-score be-
tween the designed complex structure (GLP-1 RA and GLP-1R) and the na-
tive complex structure (Semaglutide and GLP-1R); RMSD between the de-
signed GLP-1RA structure and Semaglutide native structures; pLDDT for
the designed GLP-1RA structures; The average pAE of interchain residue
pairs (interface pAE) of GLP-1 RA and GLP-1R complex. The critical thresh-
olds for these parameters were derived from the native complex structure
between Semaglutide and GLP-1R.

Computational Screening of Designed GLP-1RAs—Molecular Dynamics
(MD) Simulations: MD simulations were conducted with Amber22 to as-
sess the binding affinity of GLP-1RAs and GLP-1R. The ff03CMAP force
field was used for MD simulation.[43] The solvent model used was TIP3P,
one of the most commonly used solvent models for protein simulations.
First, energy minimization, heating, and equilibrium of the system were
carried out. The energy of the system was minimized by the steepest de-
scent method of 3000 steps and the conjugate gradient method of 3000

steps. After energyminimization, the systemwas heated from 0 to 310.15K
in a time of 50 ps and then performed an energy balance of 100 ps at
constant pressure and temperature of 310.15K. In the whole process, the
long-range electrostatic interaction was calculated by PME algorithm, and
the covalent bonds of all hydrogen atoms were constrained by SHAKE al-
gorithm. The cut-off value for the van der Waals interaction and the short-
range electrostatic interaction was set at 10 Å. The final simulation process
was carried out at NPT and temperature of 310.15K, and the simulation
time was 20 ns. Binding affinity between GLP-1RAs and GLP-1R was cal-
culated using MM/GBSA method based on MD trajectories.

Computational Screening of Designed GLP-1RAs—Diversity: Designed
GLP-1RAs were aligned using ClustalX 2.1. Phylogenetic trees were built
using the maximum-likelihood method implemented in MEGA (v10.2.2)
employing the LG +F model with a maximum of 1000 rapid bootstraps.
Obtained phylogenetic trees were visualized in iTOL (v6). To ensure se-
quence diversity, a single representative sequence was selected from each
phylogenetic cluster.

Study Design of In Vitro Experiment: For the pull-down and SPR as-
say, peptides produced via biosynthesis in E. coli BL21 was used, which
don’t include modifications such as the substitution of position 8 with Aib
and fatty acid chain at position 26. Since pulldown and SPR assay assess
the binding affinity between GLP-1RAs and GLP-1R, modifications related
to half-life were not included during this preliminary screening stage. For
cAMP and in vivo experiments, chemically synthesized peptides was used
that incorporated both Aib and a fatty acid chain. Due to the high cost of
chemical synthesis (approximately ¥5000 per peptide), only selected can-
didates from pulldown and SPR assay were synthesized withmodifications
for downstream cAMP and in vivo experiments. The GLP-1RAs sequences
for biosynthesis and chemical synthesis were shown in Table S1 (Support-
ing Information).

Study Design of in vitro Experiment—GST Pulldown Assay: DNA coding
sequences of GST-Linker-Peptides were cloned into PGEX-4T-1 (Cytiva, GE
Healthcare) between BamHI and XhoI, respectively. The structure of GST-
Linker-Peptides were shown in Figure S3 (Supporting Information). Con-
structs were transformed into E. coli BL21 (DE3) for GST-peptide fusion
protein expression. Human GLP-1R protein (MedChemExpress LLC, HY-
P700468) were added to each GST-fusion protein coupled beads and incu-
bated at 4°C for 1 h. Two washes using equilibrate buffer were performed
to remove residual GLP-1R protein. Proteins binding to beads were eluted
by 1% sodium dodecyl sulphonate. Samples were loaded on SDS-PAGE
and results were displayed by coomassi blue staining. GST-Semaglutide
was used as a positive control.

Of the 31 GLP-1RAs that passed the GST pulldown assay, 5 peptides
were excluded with relative expression values below 0.7. From the remain-
ing 26 peptides, one representative peptide was selected in each phyloge-
netic cluster to ensure sequence diversity. Finally, 13 peptides were chosen
for the SPR assay (Table 1).

the protein relative expression =
peptide band density
GLP − 1 band density

(1)

Study Design of In Vitro Experiment—Surface Plasmon Resonance (SPR):
The binding affinity between GLP-1R and GST-fusion peptides was investi-
gated by surface plasmon resonance on Biacore 8k system (Cytiva). Briefly,
the CM5 sensor chip (Cytiva, 29149603) was used to measure the binding
kinetics between GLP-1R and GST-fused peptides. Affinity KD values were
fitted by steady state affinity fitting models (1:1 binding model) using Bi-
acore Insight Evaluation Software, and experimental data were analyzed
using the Biacore Insight Evaluation Software. The detailed information
of SPR was provided in Table S2 (Supporting Information). Purified GST
protein was also loaded for kinetic analyses as a negative control. The SPR
dose-dependent saturation binding of GPL-1 and GLP-1R was tested at six
or eight concentrations in a single run.

Among the six GLP-1RAs (D03, D04, D13, D23, D41, and D44) that
passed the SPR analysis, three (D13, D41 and D44) underwent cAMP ac-
cumulation assay. The selection was based on their recovery values. The
recovery of D03, D04, D13, D23, D41, and D44 was 0.68, 0.71, 0.81, 0.71,
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0.74, 0.68, respectively. D13 with the highest recovery was chosen, D44
has the lowest recovery, and D41 has an intermediate value.

Study Design of In Vitro Experiment—Chemical Synthesis: D13, D41,
and D44 used in cAMP and in vivo experiments were synthesized us-
ing standard Fmoc chemistry. All peptides were synthesized, purified, and
characterized by Wuxi AppTec. Detailed characterization, including molec-
ular weight and purity, was provided in Table S3 (Supporting Information).
Semaglutide was obtained from Ozempic.

Study Design of In Vitro Experiment—Human GLP-1R Cell cAMP Assay:
Intracellular cAMP accumulation wasmeasured using the cAMP detection
kit (Cisbio, 62AM4PEJ) based on the homogeneous time-resolved fluores-
cence (HTRF) technology. Briefly, HEK293 cells stably expressing GLP-1R
were transferred to OptiPlate-384 plate. Add GLP-1RAs and Semaglutide
were diluted with PBS buffer supplemented with 500 μm, and were incu-
bated with cells for 30 min at room temperature. Time-resolved FRET sig-
nals were measured on an EnVision (PerkinElmer) at 665 nm and 620 nm.
All the dose-response curve fits were analyzed with R using an equation of
log (GLP-1RAs) vs activity. Two independent experiments were performed
in ten concentrations: 0.003, 0.012, 0.049, 0.195, 0.781, 3.125, 12.5, 50,
200, and 800nm. SPR and cAMP assay weremeasured acrossmultiple con-
centrations, and these in vitro experiments were intended for preliminary
screening purposes. Multiple independent validations will be conducted
in vivo experiments.

Study Design of In Vivo Experiment: Animals were cared for in accor-
dance with the Guidelines and Principles of Laboratory Animal Care and
the standard procedures established by theMedicilon Institutional Animal
Care and Use Committee (approval number: IACUC-2024-6).

Study Design of In Vivo Experiment—Study Design of Pharmacokinetics
(PK): Three SD male rats in each group were administered a single dose
of 0.05 mg kg−1 of Semaglutide (Ozempic) and the GLP-1RAs. Blood
samples were collected at 10 post- administration time points: 2, 4, 8,
12, 24, 48, 72, 96, and 168h. Plasma samples were analyzed using LC-
MS/MS (Waters XEVO TQ-XS), and pharmacokinetic parameters such as
T1/2, Cmax, Tmax, AUC0-t, andMRT0-t were calculated usingWinNonlin. The
sample preparation and detailed information of LC-MS/MS are shown in
Table S5 (Supporting Information).

Study Design of In Vivo Experiment—Study Design of db/db Diabetic
Nephropathy Models—Acute Glucose-Lowering after Single Administration:
Male db/dbmice were randomly divided into five groups, with six mice per
group: model group, Semaglutide group (10 nmol kg−1), D13 group (10
nmol kg−1), D41 group (10 nmol kg−1), and D44 group (10 nmol kg−1).[40]

Additionally, six db/m mice were included as the control group. Each ani-
mal was administered a single dose of the drug. Non-fasting blood glucose
levels were monitored at multiple time points post-administration: 0, 0.5,
1, 2, 4, 8, 24, 48, 72, 96, and 120 h.

Study Design of In Vivo Experiment—Study Design of db/db Diabetic
NephropathyModels—Long-Term Effects of Glucose-Lowering after Single Ad-
ministration: Two weeks after completing the single-dose administration
study, once the fasting blood glucose of the db/db mice (measured after
4 h of fasting) returned to the level of the model group, a 4-week con-
tinuous administration was conducted. During the continuous adminis-
tration period, fasting blood glucose levels were measured once a week.
On day 28, non-fasting blood glucose levels were measured at 0, 0.5, 1,
2, 4, 8, 24, and 48 h. Afterward, the intraperitoneal glucose tolerance test
(iPGTT) was performed after overnight fasting. Urine samples were col-
lected for the analysis of urine albumin and urine creatinine content. The
next day (after overnight fasting), animals were deeply anesthetized with
CO2, and blood samples were collected for the measurement of glycated
hemoglobin, creatinine, and blood urea nitrogen levels. Both kidneys were
excised, weighed, and the kidney to body weight ratio was calculated.

Study Design of In Vivo Experiment—Study Design of DIO Obesity Mod-
els: Male C57BL/6Jmice were fed a high-fat diet (D12492) for≈10 weeks.
The control group and model group were administered PBS, while the
Semaglutide group (10 nmol kg−1)[40] and D13 group (10 nmol kg−1),
D41 group (10 nmol kg−1), and D44 group (10 nmol kg−1) received con-
tinuous administration for 4 weeks, with five mice per group. During the
continuous administration period, body weight was monitored twice per
week. After the administration, the mice were deeply anesthetized with

CO2, and blood was collected to measure blood lipids, including serum
total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C). The
abdominal cavity was then opened, and white adipose tissue from the epi-
didymis, abdominal wall, and mesentery was collected, weighed, and the
coefficient of fat was calculated. The liver was excised, weighed, and the
coefficient of liver was also calculated.

Statistical Analysis: Data are presented as Mean ± SD. Sample size
and the number of replicates are specified in the Figure legends. Statistical
analyses were conducted using R (v4.3.1). In general, data were analyzed
with the two-sided Student’s unpaired t test. Statistically significant was
defined as follows: *P < 0.05, **P < 0.01, and ***P < 0.001.
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