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Abstract

Protein design is central to nearly all protein engineering problems, as it can enable the creation of proteins with new biological
functions, such as improving the catalytic efficiency of enzymes. One key facet of protein design, fixed-backbone protein sequence
design, seeks to design new sequences that will conform to a prescribed protein backbone structure. Nonetheless, existing sequence
design methods present limitations, such as low sequence diversity and shortcomings in experimental validation of the designed
functional proteins. These inadequacies obstruct the goal of functional protein design. To improve these limitations, we initially
developed the Graphormer-based Protein Design (GPD) model. This model utilizes the Transformer on a graph-based representation
of three-dimensional protein structures and incorporates Gaussian noise and a sequence random masks to node features, thereby
enhancing sequence recovery and diversity. The performance of the GPD model was significantly better than that of the state-of-the-
art ProteinMPNN model on multiple independent tests, especially for sequence diversity. We employed GPD to design CalB hydrolase
and generated nine artificially designed CalB proteins. The results show a 1.7-fold increase in catalytic activity compared to that of the
wild-type CalB and strong substrate selectivity on p-nitrophenyl acetate with different carbon chain lengths (C2–C16). Thus, the GPD
method could be used for the de novo design of industrial enzymes and protein drugs. The code was released at https://github.com/
decodermu/GPD.

Keywords: protein sequence design; Graphormer architecture; GPD model; function validation

INTRODUCTION
Protein design is a fundamental aspect of protein engineering with
extensive applications, such as enzyme engineering, which aims
to create designed enzymes with enhanced catalytic efficiency
[1], and therapeutic applications that focus on designing immune
proteins with increased therapeutic affinity [2]. One key method
in this field is de novo protein design, which involves creating
novel amino acid sequences that encode proteins with the desired
properties [3]. De novo protein design can be divided into two
primary tasks: protein backbone design and sequence design. This

paper focuses on the fixed-backbone protein sequence design,
also known as the inverse protein folding problem. The goal is
to generate novel sequences that fold into the fixed-backbone
structure. However, the designed sequences must not only be
structurally compatible with the intended backbone but also
functionally active, exhibiting the specified properties [4].

Numerous studies have been conducted on protein sequence
design, and the primary approaches for fixed-backbone protein
sequence design generally fall into two categories: classical
physical principle–based protein sequence design and deep
learning–based protein sequence design [5, 6]. Classical physical
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principle–based protein design, exemplified by the popular
protein design framework Rosetta [7], aims to minimize the
parametric energy function of the target structure. This is
achieved by searching for the optimal combination of sequence
and conformations [3]. However, the effectiveness of these
classical physical principle–based approaches relies heavily on
the accuracy of the energy functions for protein physics and the
efficiency of the sampling algorithms. This suggests that there are
opportunities for improving both the accuracy and computational
speed of these methods [8]. The swift advancement of deep
learning technology has facilitated the emergence of deep
learning–based protein design. Deep learning–based protein
sequence design not only accelerates the design process with high
accuracy but also revolutionizes the field by capturing complex
patterns in protein data [8]. Supplementary Figure S1 presents an
overview of all the deep learning–based protein sequence design
methods to date [9–21].

However, experimental examinations of the designed protein
sequences have only been reported by a few methods so far.
The sequences designed by 3DCNN [15], ABACUS-R [16] and
ProteinMPNN [18] have been examined experimentally using
crystallography. Furthermore, sequences from ProteinSolver [13]
and ProDESIGN-LE [21] have demonstrated the desired secondary
structure contents, evidenced by circular dichroism signatures.
Despite these promising results, the aforementioned methods
face limitations in protein functional validation and sequence
diversity, failing to meet the demands of functional protein
design. While a handful of methods have reported experimental
structures of designed sequences [13, 15, 16, 18, 21], none has
been used to analyze the functionality of these sequences. Ideally,
designed sequences should surpass the performance of their wild-
type proteins.

Furthermore, existing methods have primarily focused on
improving sequence recovery to their native counterparts. This
focus has often led to a compromise in the exploration of
sequence diversity, yielding overly uniform sequences that
lack necessary variation. Enhancing the diversity of designed
sequences is biologically significant for two reasons. Firstly,
uniformity among designed sequences means that if one
sequence fails in experimental validation, it could be indicative of
a broader issue affecting similar sequences. Therefore, selecting
more diverse sequences could improve the success rate of
functional experiments. Secondly, a greater variety of designed
sequences allows for a broader exploration of the sequence space
landscape, which is crucial for advancing our understanding of
protein functions.

In this study, we introduced the Graphormer-based Protein
Design (GPD) toolbox, an innovative approach inspired by
Graphormer [22]. This tool applies the Transformer model to a
graph-based representation of three-dimensional (3D) protein
structures for protein sequence design, incorporating a normally
distributed random matrix into node features to augment
sequence diversity. To improve the success rate in experimental
outcomes, we implemented functional filtering based on criteria
such as structure folding, solubility and function. Utilizing the
GPD toolbox, we designed 1 million de novo sequences of CalB
hydrolase. After functional filtering, nine sequences were selected
for wet lab experiments. The experimental results show that the
solubility of the nine designed sequences was 55.6%. Additionally,
one of these designed sequences exhibited a remarkable 1.7-fold
improvement in the catalytic activity compared with the CalB wild
type. The GPD toolbox was publicly available at https://yu.life.sjtu.
edu.cn/ChenLab/GPDGenerator/. This web server provided users

with an automated platform for generating protein sequences
based on given 3D protein structures.

RESULTS
The GPD architecture
The GPD model directly employs the Transformer model to a
graph-based representation of 3D protein structures (Figure 1).
To enhance the diversity of the designed protein sequences, the
GPD model incorporates a normally distributed random matrix
into the node features. These node features comprise the main-
chain dihedral angle, the secondary classification, the centrality
of each residue, the pre-designed protein sequence and a tensor
of a random seed. In contrast, the edge features include distances,
movement vectors, shortest paths and rotation quaternions.

Ablation study
We conducted ablation studies to assess the impact of node
features, edge features, graph features and a normally distributed
random matrix on our model’s performance (Figure 2). The results
show that the node features, edge features and graph features are
essential for model’s performance. Interestingly, the model lack-
ing node features still demonstrates relatively good performance
compared with the model without edge model. This suggests
that the edge feature might contain more information of the
protein structure than the node feature. Incorporating a normally
distributed random matrix can significantly enhance the diversity
of designed sequences while maintaining comparable sequence
recovery and folding capabilities.

Performance of GPD model
The GPD model was trained using the CATH 40% sequential non-
redundancy dataset, with a split ratio of 29 868:1000:103 for
the training, validation and testing sets, respectively. We further
evaluated the performance of GPD using 39 de novo proteins and
14 de novo proteins that exhibit significant structural differences
from proteins belonging to natural folds [23, 24].

A comprehensive performance comparison was conducted
between the GPD model and widely adopted design approaches,
such as ProteinSolver, Structure Transformer, ESM-IF1 and
ProteinMPNN. Four evaluation criteria, namely, recovery, diversity,
pLDDT and root mean square deviation (RMSD), were employed
to systematically assess the performance of these methods at
both sequence and structural levels.

The performance of sequence diversity and recovery
Recovery and diversity are two crucial metrics in fixed-backbone
sequence design, and they exhibit an interdependent relationship.
Higher recovery often compromises sequence diversity, and con-
versely, increased diversity can reduce recovery. Consequently, it
is essential to concurrently consider both recovery and diversity
concurrently. It is generally accepted that two proteins with a
sequence recovery exceeding 35% are likely to exhibit similar
structures and perform analogous functions [25]. For de novo
proteins, the recovery exceeds 30% for all five methods (except
ProteinSolver), underscoring the need to enhance the diversity of
designed sequences (Table 1).

As shown in Table 1, GPD achieved the highest recovery
(27.9% ± 5.4%) for 103 single-chain proteins, while ProteinMPNN
exhibited superior recovery for 14 de novo proteins (49.0% ± 8.3%)
and 39 de novo proteins (36.2% ± 11%). Notably, ESM-IF1 outper-
formed in terms of diversity across all three test datasets, except
for ProteinSolver. However, ProteinSolver exhibited low recovery
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Figure 1. The GPD architecture. (A) The overall architecture of GPD. (B) The architecture of the Graphormer block. (C) The embedding process of edge
features and node features. (D) The calculation process of distance map, local movement vector and rotate quaternion. (E) Two different ways of sequence
prediction. (F) The calculation of the shortest pathway matrix. (G) The dihedral angles of residual backbone.

(less than 30%) across these datasets and was hardly to use for
protein design.

The time taken to design 10 000 sequences with 261 residues
using a CPU was 55, 3.11 and 0.97 h for ESM-IF1 [17], Protein-
MPNN [18] and GPD, respectively. The time consumption of ESM-
IF1 was about 2.3 days, rendering ESM-IF1 unsuitable for high-
throughput protein design. It is essential to note that our com-
parison just focused on high-throughput protein design models:
Structure Transformer, ProteinMPNN and GPD. For the GPD model,
the average recovery between the designed sequences and their

corresponding native sequences was 46.2% ± 5.1% for 14 de novo
proteins (Figure 3A), 31.8% ± 5.8% for 39 de novo proteins (Sup-
plementary Figure S2) and 27.9% ± 5.4% for 103 single-chain pro-
teins (Supplementary Figure S3). The average diversity among the
designed sequences was 21.9% ± 2.4% (Figure 3B), 25.1% ± 3.3%
(Supplementary Figure S2) and 28% ± 5.6% (Supplementary Fig-
ure S3). The GPD model exhibited significantly higher recov-
ery and diversity compared to both Structure Transformer and
ProteinMPNN on 103 single-chain proteins (Wilcoxon signed-rank
test, P-values < 0.05). Moreover, the diversity of the GPD model
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Figure 2. The recovery, RMSD and diversity with the different modules of the GPD model. (A) The recovery with the different modules of the GPD
model on three test datasets. No random matrix ablated the random matrix inputted to the model. No node features ablated all the node features,
including secondary classification, dihedral angle and the centrality of each residue. No_edge features ablated all the edge features, including distance,
movement vectors and rotation quaternions. This makes GPD into a traditional Transformer using only node features. No graph features ablated all the
graph features, including node centrality degree and node shortest pathways. (B) The min RMSD with the different modules of the GPD model. (C) The
diversity with the different modules of the GPD model.

was higher than that of Structure Transformer and ProteinMPNN
on 103 single-chain proteins, 14 de novo proteins and 39 de novo
proteins (Wilcoxon signed-rank test, P-values < 0.05). For 14 de
novo proteins and 39 de novo proteins, the sequence recovery
achieved an acceptable level (>30%) for the GPD model as well
as the other two models [25].

In summary, Structure Transformer, ProteinMPNN and GPD
have attained sequence recoveries at acceptable levels, which
emphasizes the importance of increasing the diversity of designed
sequences to expand the sequence space landscape. Higher diver-
sity signifies that the designed sequences possess more variability
and cover a broader range of the sequence space landscape. The
GPD model achieved higher diversity than the other two methods
on three test datasets.

The performance of structure folding for designed sequence
We utilized each of the five methods to design 100 sequences
for every protein. These comprised 10 300 designed sequences
for 103 single-chain proteins and 5300 sequences for 53 de novo

proteins. We employed ESMFold to predict the structures of these
designed sequences. The mean RMSD between the ESMFold-
predicted structures and the corresponding native structures,
along with the density plots of the pLDDT scores, are shown in
Figure 3C and D for 14 de novo proteins, Supplementary Figure S2
for 39 de novo proteins and Supplementary Figure S3 for 103 single-
chain proteins. The minimum RMSD was 0.469, 0.511 and 0.872 Å
for 14 de novo proteins (Figure 3C), 39 de novo proteins (Supplemen-
tary Figure S2) and 103 single-chain proteins (Supplementary Fig-
ure S3), respectively. This indicates that GPD could generate
sequences with good folding ability. Concurrently, all methods
exhibited superior performance on 14 de novo proteins (Table 1).
The predicted structure with the minimum RMSD is illustrated in
Supplementary Figure S4. Protein folding ability was an important
metric for evaluating the performance of different methods. All
of these methods could generate a native-like folding structure.

Amino acids can be categorized into two groups based on their
folding abilities: disorder-promoting amino acids (such as alanine,
glycine, proline, arginine, glutamine, serine, glutamic acid and
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Table 1: The performance of different methods

Protein
classification

Methods Training dataset Recovery Diversity Min RMSD
(Å)

Timea

(design
10 000 sequences)

103 single-chain
proteins

ProteinSolver Uniparc 0.191 0.526 0.984 5 h
Structure Transformer CATH 0.264 0.130 0.948 0.69 h
ESM-IF1 CATH + AlphaFold2 0.261 0.486 0.703 55 h
ProteinMPNN CATH 0.260 0.237 0.531 3.11 h
GPD CATH 0.279 0.280 0.872 0.97 h

14 de novo proteins ProteinSolver Uniparc 0.246 0.498 0.557 /
Structure Transformer CATH 0.433 0.071 0.471 /
ESM-IF1 CATH + AlphaFold2 0.363 0.396 0.374 /
ProteinMPNN CATH 0.490 0.165 0.346 /
GPD CATH 0.462 0.219 0.469 /

39 de novo proteins ProteinSolver Uniparc 0.217 0.487 0.768 /
Structure Transformer CATH 0.346 0.096 0.489 /
ESM-IF1 CATH + AlphaFold2 0.336 0.418 0.476 /
ProteinMPNN CATH 0.362 0.177 0.357 /
GPD CATH 0.318 0.251 0.511 /

The best performance has been marked in bold. The best diversity except for ProteinSolver. ProteinSolver exhibited poor recovery across these datasets, and
the high diversity compromises sequence recovery. aTime: the task involves designing 10 000 sequences with 261 residues using a CPU.

Figure 3. Comparison of designed sequence for five methods on 14 de novo proteins. (A) The sequence recovery between the designed sequences and
the native sequence of the target structure. (B) The diversity of designed sequences. (C) RMSD for aligning the ESMFold predicted structures with
the corresponding native structures. (D) The pLDDT scores of the ESMFold predicted structures. (E) The frequency of disorder-promoting amino acids
(alanine, glycine, proline, arginine, glutamine, serine, glutamic acid and lysine) and structure-promoting amino acids (other 12 residues).

lysine) and structure-promoting amino acids (the remaining 12
residues). The presence of more structure-promoting amino acids
could facilitate protein folding. All models designed sequences
tended to have more disorder-promoting amino acids than folded
protein in CATH dataset (Figure 3E). All proteins in CATH dataset
were folded protein structures; however, the highest percentage
of designed sequences with RMSD less than 2 Å (ProteinMPNN)
was only 23.6% for single-chain proteins and the rate of foldable
sequences in the experimental validation (50% for ProteinMPNN)

was low. This suggests a limitation in the protein folding ability
of the designed sequence, highlighting the necessity for filtering
designed sequences.

The performance of amino acids frequency for
designed sequence
The frequency distributions of amino acid types for sequences
designed using different methods, as well as for native sequences,
are shown in Figure 4A for the 14 de novo proteins and in
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Figure 4. The amino acids frequency of designed sequence on 14 de novo. (A) The sequence identity between the designed sequence and the native
sequence of the target structure. (B) The Pearson correlation coefficient and the composition similarity of the amino acid type compositions of the
designed and the native sequences. (C, D) Confusion matrix between native sequence and design sequences, compared to BLOSUM62 as reference.

Supplementary Figure S5 for the 39 de novo proteins and 103
single-chain proteins. The Pearson correlation coefficient for
the amino acid–type compositions of the designed and native
sequences was 0.78, 0.80 and 0.81 for the 14 de novo proteins
(Figure 4B), 39 de novo proteins (Supplementary Figure S5) and
single-chain proteins (Supplementary Figure S5), respectively.
The composition similarity was 0.42, 0.51 and 0.48. ProteinMPNN
achieved the highest correlation (0.93) for the 14 de novo proteins,
while ESM-IF1 obtained the highest correlation for the 39 de novo
proteins (0.91) and single-chain proteins (0.97).

Certain side-chain types such as alanine, glutamic acid, leucine
and valine had been utilized more frequently in the designed
sequences than in the native sequences. In contrast, the use
of side-chain types such as isoleucine, threonine, asparagine,
glutamine and arginine significantly reduced in the designed
sequences. All methods’ designed sequences exhibited a higher
frequency of non-polar amino acids and a lower frequency of
polar amino acids.

We calculated the substitution scores between the native
sequences and the designed sequences using the same log-
odds ratio formula as in the BLOSUM62 substitution matrix
(Figure 4C and D). In the confusion matrices, the diagonal
elements correspond to the largest substitution scores for all

amino acids, suggesting that most amino acids in the designed
sequences are physicochemical similar to their native counter-
parts. For instance, phenylalanine, tryptophan and tyrosine and
lysine, arginine and methionine were similar in their respective
pairs.

Experiment validation
Only a few studies to date have reported experimental evaluations
of protein sequences designed using deep learning. 3DCNN [15],
ABACUS-R [16] and ProteinMPNN [18] have experimentally solved
atomic structures for their designed sequences. ProteinSolver [13]
and ProDESIGN-LE [21] have shown their designed sequences to
have desired secondary structure contents and exhibit coopera-
tive folding according to circular dichroism signatures. However,
none of these methods analyzed the function and activity of the
designed proteins.

In this study, we evaluated the activity of Candida antarctica
lipase B (CalB) enzyme sequences designed by the GPD using wet-
lab experiments. CalB was chosen for evaluation of the GPD model
due to its remarkable tolerance to organic solvents and thermal
stability, making it one of the most commonly employed industrial
enzymes for hydrolytic reactions in biocatalytic applications [26].
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CalB belongs to the α/β hydrolase family. Composed of 317 amino
acids, CalB has a total structural weight of 33.46 kDa. The CalB
structure was extracted from the Protein DataBank (PDB code:
1TCA) [27]. The substrate used in this study is p-nitrophenyl
acetate (C2).

CalB design
CalB features a catalytic triad formed by residues S105, D187 and
H224. The active-site cavity is tunnel-shaped, which constrains
the steric positioning of substrates. In our design process, we kept
62 residue positions fixed. This included 5 active-site amino acids,
19 substrate pocket amino acids, 20 conserved sites from CalB
single-site saturation mutagenesis data and 18 conserved sites
from multiple sequence alignment (see Materials and methods
for more details). Using the GPD model, we generated 1 million
de novo designed sequences for CalB.

Functional screening
The functional screening of 1 million CalB-designed sequences
is shown in Figure 5A. The designed sequences were virtually
screened on the basis of protein folding ability, protein solubility
and molecular dynamics (MD) simulation.

Protein folding ability

We implemented ESMFold and AlphaFold2 to predict the struc-
tures of the proposed 1 million sequence designs. To evaluate
the folding capability of these designs, several parameters were
used: the RMSD of 62 conserved sites between the forecasted
structures and native CalB structures, the predicted local distance
difference test (pLDDT) scores, consistency between ESMFold and
AlphaFold2 predictions and the radius of gyration (Rg) comparing
the predicted structures with the native CalB structures.

Protein solubility

To estimate protein solubility, we took into account the net charge,
hydrophobicity and spatial aggregation propensity (SAP) score.
Following an assessment of protein folding and solubility, 151
sequences were selected from the initial design set.

MD simulations

MD simulations were carried out for the 151 protein–ligand
complexes derived from Molecular Operating Environment (MOE)
docking results. Following these simulations, nine sequences,
which align with the catalytic mechanism, were selected for
experimental validation. The RMSD of these sequences varied
between 2.29 and 3.38 Å, with recovery rates ranging from 0.445
to 0.498. The diversity among these nine sequences was found
between 0.215 and 0.253.

Comprehensive data related to each step of the screening
process are listed in Supplementary Table S1. Figure 5B illustrates
the active sites of the CalB enzyme, while Figure 5C and Sup-
plementary Figure S6 display a seqlog plot of the key residues
post-screening. This indicates our virtual screening workflow’s
effectiveness in selecting residues that align with the required
chemical properties. The residues of Thr42, Gln46, Leu140, Ala146,
Ala282 and Val286 were identified in proximity to the conserved
sites.

Experimental validation
Nine sequences that fulfilled the catalytic mechanism were cho-
sen for experimental validation (Supplementary Figure S7). Out
of these nine designed sequences, five yielded successful protein

expression in yeast. All expressed proteins were soluble post-
purification. Notably, two designed sequences, D263 and D323,
demonstrated catalytic activity (Figure 6A and B). The success
rate underscores the effectiveness of our design and screening
methodology.

As shown in Figure 6B, the designed proteins D263 and D323
not only showed catalytic activity but also exhibited lower RMSD
and higher recovery compared to their inactive counterparts.
This outcome indicates the potential usefulness of our screening
workflow.

The purified proteins underwent specific activity analy-
sis using an ELISA Reader. The specific activity, measured
by the ELISA Reader, was 0.210 ± 0.0065, 0.361 ± 0.0089 and
0.072 ± 0.0029 U/mg for the CalB native sequence, D323 and
D263, respectively. Of these, D323 had a higher hydrolytic activity
than that of the CalB native sequence (P-value is 0.029). The
experimental results demonstrate that the de novo CalB design
sequence had higher activity than the CalB native sequence.
We further evaluated the substrate selectivity of the designed
sequences. As shown in Supplementary Figure S8, the designed
sequences have strong selectivity on six substrates (C2, C4, C6,
C8, C12 and C16) and C2 is the most favorable substrate because
our sequence screening is based on C2.

Further insight into the experimental results was gained
through MD simulations conducted for the wild type, D323 and
D263. For each system, three parallel trajectories of 200 ns were
run. Figure 6E–G revealed that the designed proteins had higher
RMSD compared to the wild-type crystal structure. Yet, the
RMSD of the simulated structure was considerably lower than
the AlphaFold2 predicted one (shown in Figure 6B), suggesting
that MD simulation could enhance structure prediction results.
Figure 6D illustrates that the hydrogen bond between Ser105
and His224 is vital to CALB’s catalytic capacity. Figure 6H
demonstrates that the wild type and D323 protein exhibit
a higher percentage of hydrogen bonds compared to D263.
This observation could partly explain the experimental results.
Additionally, the distance between the Ser105 side-chain gamma
oxygen atom and the ligand carbonyl carbon atom of D323
was lower than that of the wild type and D263, as shown in
Figure 6I. This finding might explain why D323 had the highest
catalytic ability among the three. Nevertheless, the generalized
born surface area (GBSA) results in Figure 6J show no significant
difference among the three systems, suggesting that GBSA results
might only indicate binding affinity, not catalytic capability.

GPDGenerator Webserver
As illustrated in Supplementary Figure S9, we have developed and
made publicly accessible a user-friendly online tool, the GPDGen-
erator (https://yu.life.sjtu.edu.cn/ChenLab/GPDGenerator/). The
server utilized parameters derived from our trained model to
design protein sequences based on the input PDB file.

The ‘Introduction’ interface provided an overview of GPD and
showcases examples of GPD results. The ‘Analysis’ interface
allowed users to input a PDB file and design specific amino acids
at specified positions. The ‘Results’ interface output the designed
sequences in FASTA format and provided the recovery along with
the corresponding native sequence.

It’s important to note that the protein length should not exceed
400 amino acids, and the number of designed sequences should
be kept under 100 to conserve computational resources. In con-
clusion, this online tool was designed to facilitate the generation
of novel protein sequences based on a fixed backbone.
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Figure 5. The design workflow of CalB hydrolase. (A) The design workflow of CalB including CalB sequences design, protein folding ability, protein
solubility and MD simulation. (B) The seqlog plot of Thr42, Gln46, Leu140, Ala146, Ala282 and Val286 after each step screening. (C) The CalB and substrate
(p-nitrophenyl acetate C2) complex after MD simulation. (D) The region of CalB active sites is enlarged. (E) The 2D interaction diagram between CalB
and substrate. (F) The dynamic cross-correlation matrix (DCCM) characterizes the significant interactions of CalB active sites and substrate.

DISCUSSION
This study introduces a graph representation–based Transformer,
GPD, designed to tackle fixed-backbone protein sequence design.
When compared to existing deep learning protein sequence
design methodologies, the primary contributions of our GPD

model are 2-fold. Firstly, the GPD model integrates five graph
node encodings and four edge encodings, harnessing the protein’s
spatial information effectively. A normally distributed random
matrix was also incorporated into node features to augment
the diversity of the designed sequences. Secondly, functional
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Figure 6. Experiments and MD simulation results of designed sequences. (A) The number of designed sequences for experimented and expressed. (B) The
RMSD and recovery values of designed sequences. (C) The specific activity of designed sequences and wild type using enzyme linked immunosorbent
assay (ELISA) Reader. (D) The model of pre-catalytic state of CALB-substrate complex. (E) The alignment between MD simulation clustered wild type
(WT) structure and WT pdb structure. (F) The alignment between MD simulation clustered D323 structure and WT pdb structure. (G) The alignment
between MD simulation clustered D263 structure and WT pdb structure. (H) The hydrogen bond percentage during the MD simulation trajectories. (I)
The distance between Ser105 side-chain gamma oxygen atom and the carbonyl carbon atom. (J) The GBSA binding free energy.
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filtering, based on structure folding, solubility and function,
was performed to boost the experimental success rate. The
GPD-designed sequences of CalB hydrolase demonstrated higher
specific activity than the CalB wild type.

The performance of time efficiency for GPD model is also pre-
dominant. For instance, the time taken to design 100 sequences
with 261 residues using a CPU were 180, 25, 1980, 112, 540 000,
247 100 and 35 s for ProteinSolver [13], Structure Transformer
[10], ESM-IF1 [17], ProteinMPNN [18], 3D CNN [15], ABACUS-R [16]
and GPD, respectively. Compared to the three methods (3DCNN,
ABACUS-R and ProteinMPNN) with experimental validations by
crystallography, the GPD model required less time which is better
for high-throughput sequence generation.

The GPD model has achieved higher recovery and diversity
across various proteins types. Existing methods have primar-
ily focused on improving protein sequence recovery. However,
the native recovery rate should not be considered as the ‘gold
standard’ for benchmarking different methods [28]. The sequence
space is vast due to the potential combinations of 20 amino
acid residues. Ideally, the designed sequences should cover a
wide range of this sequence space landscape, exhibiting high
diversity [16]. In functional protein sequence design challenges,
an increased diversity in models can significantly broaden the
range of sequence options available for subsequent functional
assays. This expanded pool of options improves the likelihood of
identifying sequences that truly possess the desired functionality,
as evidenced by our high functional sequence rate (two out of
nine).

High recovery alone is not an adequate metric for predicting
the performance of design methods in wet laboratory experi-
ments [16, 18, 29, 30]. High recovery has not shown strong cor-
relations with the success rate of wet experiments, since a sin-
gle residue substitution, which may not cause notable changes
in metrics, can nevertheless disrupt the overall structure [31].
The capability to express and purify designed proteins is crucial
the success of wet experiments. Functional filtering, based on
structure folding, solubility and function, is key to improving
the success rate of wet experiments [32]. Assessing structure
folding and solubility computationally provides useful protocols
for evaluating the design sequences.

In this study, we used GPD to design 1 million de novo sequences
of CalB hydrolase. Nine sequences post functional filtering
were examined by wet experiments. Over half of the designed
sequences, specifically five out of nine, were successfully
expressed and purified. Two out of the nine experimentally
evaluated designed sequences of CalB exhibited hydrolytic
activity. Notably, the specific activity of one designed sequence
(0.36) was significantly higher than that of the CalB wild type
(0.21). Furthermore, the designed sequences have strong substrate
selectivity on six substrates with different carbon chain lengths
(C2–C16). The high success rate of GPD’s experimental design,
coupled with computational efficiency and no requirement for
customization, makes GPD highly useful for protein design.

Despite the satisfactory performance of our method on fixed-
backbone protein sequence design, there are opportunities for
further enhancement. Firstly, the protein folding capability of the
designed sequence is limited. Although the minimum RMSD for
these models is less than 1.0 Å, only 23.6% of designed sequences
achieve an RMSD under 2 Å for single-chain proteins (Protein-
MPNN). All methods still suffer from protein folding deficiencies,
leading to experimental failure. Thus, the protein folding ability
is a crucial metric to evaluate the performance of different meth-
ods. Secondly, the number of expressed and soluble proteins is

not particularly high compared to ProteinMPNN and ABACUS-R.
The ratios of expressed and soluble proteins are 76% and 86%
for ProteinMPNN [18] and ABACUS-R [16], respectively, while for
GPD, the ratio is only 56%. Lastly, the fixed-backbone sequence
design for different types of proteins should be validated by wet
experiments in future studies.

MATERIALS AND METHODS
Feature representation
In order to obtain as much structure information as possible and
satisfy the SE [3] equivariance, we treated each single protein
main-chain structure as a graph that contains both node features
and edge features. We took every single residue as a node and
took the connection between residues as the edge of the graph. All
node features and edge features could be calculated by only the
backbone atom information and satisfied the SE [3] equivariance.

The node features contained the main-chain dihedral angles
psi and phi, the secondary classification, the centrality of each
residue, the pre-designed protein sequence and a tensor of ran-
dom seed. For the main-chain dihedral angle, both phi and psi
were embedded in the ways of sine and cosine function (shown
in Figure 1A). This information redundancy could help the neural
network better learned the features. We used the Define Sec-
ondary Structure of Proteins (DSSP) algorithm to classify the
main-chain secondary structure. Eight class of secondary struc-
tures were used in this study, such as 310-helix, α-helix, π-helix,
hydrogen bonded turn, β-harpin, β-bridge, bend and loop. The
centrality of a single residue was represented by the betweenness
centrality and calculated by

Cb(k) =
∑

i �=j �=k,i<j

gij(k)

gij
. (1)

where cb(k) means the betweenness centrality of node k. gij means
the number of shortest paths that start from node i then end with
node j, and at the same time pass node vi. gij means the number
of all shortest paths between node i and j.

We have leaved an API for pre-designed sequence embedding.
The user could pre-design each residue at each position and the
other residues will be generated according to both the structure
information and the pre-designed sequence. If there is no pre-
designed residue requirement, the pre-designed sequence tensor
would be set as all-zeros. Taking Figure 1B for example, when
redesigning GFP, we could predefine the chromophoric residues
that could not be predicted by the backbone structure but neces-
sary for GFP function (citation for GFP).

The random tensor was used for enlarging the designed
sequence space, which is of essential importance of de novo
protein design. Our goal was to get a higher level of neural network
randomicity when training at the same level of loss value.

The edge features contained the distances, the movement
vectors, the shortest pathway and the rotation quaternions. For
the distances map, we calculated the distances between the alpha
carbon atoms of each residue (shown in Figure 1D). For the move-
ment vector, we used the coordinate system transformation to
satisfy the SE [3] equivariance. First, by using the residue gas
shown in Figure 1D, (citation for residue gas) we defined a residual
specific coordinate system O, defined as

O =
[−−→
CαC,

−−→
CαN,

−−→
CαC × −−→

CαN
]

. (2)
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The residual specific coordinate system based on movement
vector vm was calculated by

vm = OT
−−−→
CαC′

α

‖ −→
C αC′

α ‖
. (3)

where vm means the transferred movement vector,
−−−→
CαC′

α means
the initial movement vector under the Cartesian coordinate sys-
tem.

For the rotation relation between two residues, we used rota-
tion quaternion for representation, defined as

qi,j = q
(
OT

i Oj
)

. (4)

where qi,j means the quaternion number, q (· ) means the oper-
ation that transfer the rotation matrix into rotation quaternion
number. The Oi and Oj are the two residual coordinate system
representations of residue i and j, respectively.

The shortest pathway feature was calculated based on the
distance matrix, also a way of feature redundancy. We set the cut
of 12 Å between two carbon alpha atoms to define whether there
is a contact between two residues. By using this contact map, we
calculated the length of the shortest path between each residue
pairs, shown in Figure 1E for an example.

Model structure
The overall architecture of GPD is shown in Figure 1A, using only
the encoder part of the real Graphormer for save more computa-
tional resources. Here, we took the whole protein backbone as an
embedded graph G = (

V,E
)

where V = {v1, . . . ,vN} describe the
residual level of node features (N is the protein sequence length)
andE = {

eij
}

describe the edge features (i and j refer to the residue
index). The detailed feature embedding processes are shown in
section Feature representation. Six recycles of the Graphormer
attention block were used. The key component of Graphormer
was the Graphormer block and is shown in Figure 1B. The main
difference between Graphormer and traditional Transformer was
the adding of the embedded edge feature. In every Graphormer
block, the interaction weight between two residues’ node features
was determined by both the attention matrix and the edge feature
matrix. This allowed the structural information to flow from
edges to nodes. Also, the node information could flow to the edges
in the second Graphormer block.

For each head of the Graphormer multi-head attention block,
the layer update process was as follows. Let H = {

h1, . . . ,hN
} ∈

R
N×d be the embedded node feature, where N is the dimension

of protein sequence and d is the hidden dimension. hi is the
hidden representation of residue i. The input H s projected by
three matrices WQ ∈ R

d×dK , WK ∈ R
d×dK and WV ∈ R

d×dV to

the corresponding Q, K and V. Let He =
{
he(i,j)

}
∈ R

N×N×de

wherehe(i,j) is the embedded edge feature representation between
residue i and j and de is the hidden dimension. The Graphormer
self-attention weight Aij could be calculated as

Aij =
(
hiWQ

) (
hjWK

)T√
dK

+ Cij (5)

where Cij could be calculated as follows:

Cij = 1
de

(6)

where n-th dimension of the edge feature between residue i and
j. The output of the single self-attention layer could be calculated
as

Attn
(
H

) = softmax (A) V, V = HWV (7)

The embedding blocks for edge features and node features
are shown in Figure 1C and D, respectively. The Distances map,
the movement vector matrix, the rotate quaternion matrix and
the shortest path number matrix were all joined at the last
dimension and passed through two layers of fully connected
neural networks. The last dimension of the edge features matrix
was transferred into the exact dimension of the number of the
attention heads in the multi-head attention block.

We utilized the layer normalization (LN) before the multi-
head self-attention (MHA) and the feed-forward blocks (FFN). The
number of head is 10 and the dimension of feed-forward is 1024.
The designed sequences were generated by passing through a
linear layer followed by the softmax operation. The cross-entropy
loss was computed between the predicted amino acid types and
the original ones. Let L

(
x, y

)
be the loss value,

L
(
x, y

) =
∑N

n ln
N

(8)

where x is the input and y is the output, N is the number of the
amino acid residues of a single protein sequence. The ln could be
calculated as follows:

ln = log

∑C
c=1 exp

(
xn,c

)
exp

(
xn,yn

) (9)

where C = 22, which represents the residue types during the train-
ing processes (20 amino acid types, 1 unknown type and 1 padding
type). We used Adam as the optimizer with a batch size of 64, and
the learning rate was set to 0.002. GPD was trained on 1 NVIDIA
40G A100 GPUs for approximately 1 day. GPD took 35 s to design
100 sequences with 261 residues using a CPU. GPD demonstrates
high efficiency in protein sequence design.

Data set and benchmark metrics
We used the CATH 40% sequential non-redundancy dataset for
neural network training, validation and testing. The split ratio
between training, validating and testing set was 29 868:1000:103.
We trained the network for 400 epochs with the randomly masked
pre-designed sequence and validated with the fully masked pre-
designed sequence. Fourteen de novo proteins, 39 de novo proteins
and 103 single-chains proteins were used to evaluate the perfor-
mance of GPD model and other existed methods.

Recovery was the proportion of the same amino acids at equiv-
alent position between the native sequence and the designed
sequence, calculated with Equation (10). Diversity was one minus
the proportion of the same or similar amino acids at equivalent
position between designed sequence, calculated with Equation
(11). RMSD quantifies the differences between the predicted struc-
tures and the corresponding native structures. RMSD was calcu-
lated as Equation (12).

Recovery =
# of same amino acids between native and designed seuqnce

the length of sequence
∗ 100. (10)
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Diversity =

1 − # of same or similar amino acids between designed seuqnce
the length of sequence

∗ 100.

(11)

RMSD =
√√√√ 1

N

N∑
i=1

(
rp
i − rn

i

)2
. (12)

where rp
i and rn

i are Cartesian coordinates of the i-th atom from
predicted structure rp and the native structure rn, respectively. N
is the number of atoms.

CalB design
Sixty-two residue positions were fixed according to the enzyme
catalytic mechanism. Residues S105, D187 and H224 were cat-
alytic triad; T40 and Q106 were oxyanion hole; A141, L144, V149
and I285 were substrate hydrophobic pocket; and D134, T138
and Q157 were substrate hydrophilic pocket. Twenty conserved
residues (38, 39, 107, 108, 109, 110, 111, 133, 180, 181, 182, 190,
209, 230, 79, 130, 131, 132, 135, 228) were from CalB single site-
saturation mutagenesis data. Eighteen conserved residues (103,
104, 190, 69, 180, 209, 216, 239, 188, 258, 150, 136, 294, 127, 74, 98,
169, 64) were from multiple sequence alignment. MD simulation
shows that 15 residues (268–280, 225, 154) were important to keep
the steric positioning of substrates. These 62 conserved residues
of CalB were fixed upon using GPD to design 1 million sequences.

Functional screening
The designed sequences were virtually screened based on protein
folding ability, protein solubility and MD simulation. According
to the structure of CalB, seven residues (277, 280, 281, 285, 139,
188, 38) near substrate hydrophobic pocket should be non-polar.
40 278 designed sequences were non-polar amino acid on these
seven residues. ESMFold was used to predict the structure of these
sequences. The detailed information is listed in Supplementary
Table S1. Firstly, we applied ESMFold to predict the structures
of the 40 278 designed sequences. 485 sequences were met the
screening criteria of protein folding ability and protein solubility.
Secondly, we used AlphaFold2 to predict the structures of these
485 sequences; 151 sequences were filtered according to protein
folding ability and protein solubility. MD simulations were car-
ried out for the 151 protein–ligand complexes. Nine sequences
met the catalytic mechanism and were chosen for experimental
validation.

Protein folding ability
The radius of gyration (Rg) of Cα , the RMSD of 62 conserved
sites [Equation (12)] and the pLDDT scores were used to estimate
the folding ability of designed sequences. Rg of Cα determines
the compactness of predicted structures; smaller means that
the protein structure is more compactness and stable. The Rg
was calculated by mdtraj [23, 33, 34], and the Rg of designed
proteins should be less than that of CalB native structure (18.45 Å).
RMSD quantifies the differences of 62 conserved sites between
the predicted structures and the CalB native structure. The RMSD
of 62 conserved sites should be less than 1.5 Å, and the pLDDT
of predicted structures should be more than 80. The Rg only
measures the folding ability of predicted proteins as a whole,
while the RMSD of 62 conserved sites guarantees the similarity
of activity sites.

Protein solubility
The net charge, hydrophobicity and SAP were used to estimate the
protein solubility. The net charge of a protein was important for its

solubility; neutral or positively charged proteins were more likely
to lead to aggregation, and neutral or positively charged proteins
might have non-specific binding with negatively charged DNA
(Equation (13)). SAP was calculated for each residue by a combi-
nation of solvent accessibility area and hydrophobicity, calculated
by Rosetta. Hydrophobicity controls the non-polar residues on the
surface (Equations (14) and (15)) [31].

Net change = #Arg + #Lys − #Asp − #Glu (13)

ni =
L∑

j=1

1/
(
1 + exp

(
dij − m

)) ∗ ((
cos

(
π − φij

) + a
)
/ (1 + a)

)b (14)

Hydrophobicity =
L∑

i=1

δ∗
i [1 − sigmoid (ni − n0)]

/

L∑
i=1

[1 − sigmoid (ni − n0)] (15)

where dij and φij are the Cb −Cb distance and Ca−Cb/Ca−Cb angles
between residues i and j and m = 1, a = 0.5 and b = 2 are tuning
parameters set to their default values. n0 was the median of ni.
δ∗

i = 1 if residue i is non-polar (V, I, L, M, W, F) and 0 otherwise.
The quantity 1−sigmoid (ni − n0) ranges from 0 to 1 and is higher
when a residue is closer to the surface. More nonpolar residues on
the surface would disrupt protein folding.

MD simulations
MD simulations were carried out for the 151 protein–ligand com-
plexes from MOE docking results. Because CALB was an ordered
protein with many short disordered regions, ff03CMAP force field
was used for simulation [35]. This force field was developed by our
group and was proved to balance the ordered–disordered region
co-existing systems (Recent force field strategies for intrinsically
disordered proteins). The solvent model used was TIP4P-Ew [36],
a model proved to be suitable for ordered protein [37, 38]. The
antechamber was used to parameterize the ligand molecule [39].
Firstly, energy minimization, heating and equilibrium of the sys-
tem were carried out. The energy of the system was minimized
by the steepest descent method of 3000 steps and the conjugate
gradient method of 3000 steps. After energy minimization, the
system was heated from 0 to 321 K in a time of 50 ps and
then performs an energy balance of 100 ps at constant pressure
and temperature of 321 K. In the whole process, the long-range
electrostatic interaction was calculated by PME algorithm, and the
covalent bonds of all hydrogen atoms were constrained by SHAKE
algorithm. The cut-off value for the van der Waals interaction and
the short-range electrostatic interaction was set at 8 Å. The final
simulation process was carried out at NPT and temperature of 321
K, and the simulation time was 20 ns. Nine sequences with rea-
sonable conformation were selected for experimental validation.
After experiments, MD simulation of the wild-type complex, the
D323 and the D263 were performed with three parallel trajectories
for 200 ns.

Trajectory analysis
The dynamic cross-correlation matrix was calculated as follows
(Equation (16)):

Cij = Δ
−→
Ri

〈
Δ

−→
Ri ·Δ−→

Rj

〉
√〈∣∣∣Δ−→

Ri

∣∣∣2
〉 〈∣∣∣Δ−→

Rj

∣∣∣2
〉 (16)
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where Cij is the cross-correlation of atom i and atom j, 〈〉 denotes

time averaging and Δ
−→
Ri and Δ

−→
Rj represent the displacement of

atom i and j, respectively. When calculating DCCM, the python
package MDtraj was used for trajectory loading [23, 34]. The
cpptraj was used for RMSD, distance, hydrogen bond and structure
cluster analysis. The DBSCAN method was used for clustering [40],
taking 1 frame every 100 frames. MinPoints was set to 10, and
epsilon was set to 3.0. When calculating the hydrogen bond, the
distance cut-off was set to 0.3 nm, while the angle cut-off was
set to 120◦. The generalized Born surface area (GBSA) model was
used to calculated the binding free energies of the protein–ligand
complexes [41].

Heterologous expression and purification of CalB
The Escherichia coli Rosetta (DE3) with the recombinant plasmid of
pET22b-CalB designed sequences was cultivated for 3 h at 37◦C
in 2× yeast extract tryptone (2YT) with ampicillin (100 μg/ml)
and chloramphenicol (34 μg/ml). Then, the final concentration
of 0.1 mM IPTG (isopropylβ-D-thiogalactoside) was added and
induced overnight at 15◦C. Cells were collected by centrifugation
at 5000 rpm for 10 min. The designed proteins were purified
by Nickel column affinity chromatography. The purified proteins
were detected by sodium dodecyl sulfate polyacrylamide gel elec-
trophoresis (SDS-PAGE). The recombinant plasmid of pET22b-CalB
was synthesized in GENEWIZ Company (Suzhou, China).

Enzyme activity assays
The p-nitrophenyl acetate C2 was used to determine the activity of
CalB designed sequences and CalB wild type. The ability of enzy-
matic hydrolysis was measured by ELISA. The reaction system
consisted of p-nitrophenyl acetate C2 (200 M) and 100 L enzyme
solution, and the reaction mixture was supplemented to 1 ml by
50 mM PBS (pH 7.5). The enzymatic reaction was carried out at
37◦C for 5 min. One unit of enzymatic activity (U) was defined
as the amount of enzyme required to hydrolyze the substrate to
produce 1 μmol of p-nitrophenol per min. p-nitrophenyl acetate
C2 (CAS No. 830-03-5) was from Sigma-Aldrich (St. Louis, MO, USA).

Key Points

• This is the first time to build Graphormer-based archi-
tecture for protein design (named GPD) to efficiently
generate protein sequence.

• The performance of GPD is significantly better than that
of state-of-the-art model for ProteinMPNN on multiple
independent tests, especially for sequence diversity.

• GPD was successfully used to discovery CalB hydrolase
with high catalytic activity and substrate selectivity.
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