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Abstract

The biological function of proteins is determined not only by their static structures but also by the dynamic properties of their
conformational ensembles. Numerous high-accuracy static structure prediction tools have been recently developed based on deep
learning; however, there remains a lack of efficient and accurate methods for exploring protein dynamic conformations. Traditionally,
studies concerning protein dynamics have relied on molecular dynamics (MD) simulations, which incur significant computational
costs for all-atom precision and struggle to adequately sample conformational spaces with high energy barriers. To overcome these
limitations, various enhanced sampling techniques have been developed to accelerate sampling in MD. Traditional enhanced sampling
approaches like replica exchange molecular dynamics (REMD) and frontier expansion sampling (FEXS) often follow the MD simulation
approach and still cost a lot of computational resources and time. Variational autoencoders (VAEs), as a classic deep generative model,
are not restricted by potential energy landscapes and can explore conformational spaces more efficiently than traditional methods.
However, VAEs often face challenges in generating reasonable conformations for complex proteins, especially intrinsically disordered
proteins (IDPs), which limits their application as an enhanced sampling method. In this study, we presented a novel deep learning model
(named Phanto-IDP) that utilizes a graph-based encoder to extract protein features and a transformer-based decoder combined with
variational sampling to generate highly accurate protein backbones. Ten IDPs and four structured proteins were used to evaluate the
sampling ability of Phanto-IDP. The results demonstrate that Phanto-IDP has high fidelity and diversity in the generated conformation
ensembles, making it a suitable tool for enhancing the efficiency of MD simulation, generating broader protein conformational space
and a continuous protein transition path.

Keywords: intrinsically disordered protein; protein backbone generation; molecular dynamic simulation; enhanced sampling; Phanto-
IDP model

INTRODUCTION

Experimental techniques, such as NMR, are used to probe the

In recent years, there has been significant progress in protein
structure prediction. Deep learning models such as AlphaFold2
and ESMFold are already able to accurately predict the three-
dimensional structure of a single protein based on its sequence
[1, 2]. However, the biological function of a protein is not solely
determined by a single three-dimensional structure, but rather,
it also depends on the dynamic properties of its conformational
ensemble [3]. Therefore, the characterization of protein conforma-
tional ensemble is indispensable for understanding its function,
designing targeted drugs or any functionally related works [4, 5].

dynamic properties of biomolecules. However, these techniques
often suffer from low resolution and are hardly applicable to
intrinsically disordered proteins (IDPs) [6, 7]. Therefore, compu-
tational tools that can generate a collection of molecular con-
formations are urgently required as an alternative. One pow-
erful strategy is molecular dynamic (MD) simulation, which is
based on Newtonian mechanics that can sample conformations
of biomolecules [8, 9]. MD simulation is frequently utilized in
obtaining the energetically optimal regions and calculating the
relative free energies between conformations [10, 11]. However,
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MD simulation is of high computational complexity and often
struggles to cross kinetic barriers [12]. Therefore, various methods
have been recently developed for accelerating MD sampling have
been developed, collectively referred to as enhanced sampling.

Traditional enhanced sampling methods, such as replica
exchange molecular dynamics (REMD), often follow the MD
simulation approach and aim to accelerate the simulation process
of crossing high energy barriers in the conformational space
[13, 14]. Although these approaches do ensure more sufficient
sampling, they still cost a lot of computational resources and time.
On the other hand, in recent years, several deep learning-based
enhanced sampling methods, such as the variational autoencoder
(VAE), have been proposed [15, 16]. These methods usually train
a generative model on existing MD simulation trajectories to
efficiently generate novel protein conformations. However, the
accuracy and rationality of the generated conformations by these
models are often not satisfying, which undoubtedly limits the
application of these methods in exploring protein dynamics
[17,18].

Considering the tremendous success of deep learning in the
field of protein structure prediction in recent years, we believe
that we can draw inspiration from these studies’ state-of-art
decoders to improve the accuracy of existing generative models
[19, 20]. In this study, we trained a generative model using full-
atomic molecular dynamics simulation data of IDPs. The model
functions akin to a phantoscope, being rather light-weighted and
delving into the vast protein conformation space (named Phanto-
IDP). We choose to train on IDP systems due to their high confor-
mational diversity, which poeses challenges for traditional experi-
mental or computational methods [21]. We represented the target
protein conformation in the form of graphs and constructed a
modified graph variational autoencoder. Inspired by cutting-edge
protein structure prediction models, we used transformer as the
decoder part of the model, enabling the model to output Cartesian
coordinates directly. Notably, the average root-mean-square devi-
ation (RMSD) between the backbone reconstructed by our model
and the input conformation in most tested protein systems were
less than 1 A (e.g., 0.885 A in PaaA?2, a 71-residue IDP), indicating
that our model is accurate in predicting protein structure. Fur-
thermore, our model exhibits impressive speed, generating 50 000
conformations within 1 min, with many being previously unseen.
By customizing the sampling distribution in the latent space,
we could use the model to sample a conformational ensemble
to describe possible transition paths in detail. We also proved
that the generated ensemble conforms to Boltzmann distribution;
thus, the generated conformations could be directly used for cal-
culating relative free energies or downstream applications such
as drug screening.

RESULTS
Overview

Given a conformation from MD trajectory, Phanto-IDP first
converts the backbone atom features into a protein graph and
uses the graph convolutional network (GCN) to learn the atom
embeddings. Then, a non-linear fully connected layer is applied
to the embedded graph for feature dimension reduction. The next
step involves transforming the atom embedding features into
residue graphs, which are subsequently fed into the variational
layer. Finally, transformer blocks are utilized to obtain the
backbone atom coordinates (shown in Figure 1). Please refer to
Materials and Methods for more details.

To assess the effectiveness of our model, we designed sev-
eral tasks to evaluate the performance of Phanto-IDP. Firstly, we
assessed the model’s capability to reconstruct IDP conformations,
which determined the model’s ability to extract information from
graph representations and to accurately capture crucial features.
Satisfying reconstruction performance is a prerequisite of gener-
ative sampling, as it signifies the model’s proficiency in capturing
structure variation at sufficient resolution. Next, we analyzed the
diversity and quality of generated conformations and visualized
the conformation ensembles through principal component anal-
ysis (PCA) dimensionality reduction and clustering. We further
explored the potential of the model for enhanced sampling. By
training and generating on short MD trajectories, we investigated
the similarities and differences between the conformation ensem-
bles generated by the model and those obtained from replica
exchange molecular dynamics (REMD). Additionally, we utilized
Phanto-IDP to generate interpolations between two extremely
different conformations selected from original MD trajectories.
These tests served as evidence that our approach could be effec-
tively used for enhanced sampling.

Reconstruction of IDP conformations

A fundamental request for a generative model is its capacity to
accurately embed and reconstruct data. Precise reconstruction
demonstrates the capability of a model to effectively capture
structural features. This ability is crucial for generating unseen
conformations through latent space sampling.

We trained and evaluated the model using 50% of the confor-
mations from MD trajectories as the training set, 25% as the vali-
dation set and 25% as the test set. On the test set, which consists
of 12 500 conformations that were not encountered during the
model training process, we assessed the quality of conformation
reconstruction using RMSD and dihedral angle distributions as
indexes (shown in Figure 2).

First, we calculated the pairwise RMSD between the back-
bone of all input conformations and their corresponding recon-
structed conformations (Figure 2A). The average reconstruction
RMSD for the RS1, PaaA2 and «-synuclein systems was 0.511,
0.885 and 2.714 A, respectively. These reconstruction errors could
be considered as slight. Additionally, we computed 20 k dihedral
angles, respectively, for the input and reconstructed conforma-
tion ensembles. The results show that the distribution of recon-
structed conformations closely matches the o dihedral angle
distribution of the MD conformation ensemble (Figure 2B). We
further calculated Jensen-Shannon (JS) divergence between the
reconstructed ensemble and the MD-derived » angles. The low
divergence (0.035in RS1,0.052 in PaaA2 and 0.102 for ¢-synuclein)
indicated high similarity between the reconstructed omega angles
and the original ones across the three systems.

We also calculated the ¢ — ¢ distributions of the reconstructed
conformation ensembles and compared them with MD trajec-
tories (Figure 2C-E), noticing that ¢ — y distributions of the
reconstructed conformation ensembles were quite similar to
the MD distributions. We randomly selected a set of original
conformations and reconstructed conformations for each of the
three IDP systems and performed alignment and visualization
using PyMOL (https://pymol.org/2/). The all-atom RMSDs of
these three sets of conformations were slightly higher than
the backbone RMSDs, indicating that the refinement process
might not fully reconstruct the side-chain distributions of the
corresponding conformations. However, refinement did not affect
backbone distribution severely (Figure S1), and the reconstructed
backbone was considered relatively ideal. This could also be
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Figure 1. Overview of Phanto-IDP. (A) The way Phanto-IDP functions in sampling conformation space for a specific protein. (B

inferred from the similarity analysis between the average distance
maps of MD and the reconstruction ensembles (Figure 2C-E).
The MSE of the average distance matrices among the three
test systems was relatively small. In the PaaA2 system, MSE =
5.874 x 1072, which we attributed to its high degree of structural
organization and low difficulty in learning ordered features.
When analyzing the reconstruction performance of the model,
we found that due to the limited motion of structured regions
in the MD trajectories and their relatively fixed features, the
accuracy of the model in reconstructing these regions was much
higher than that of disordered regions (Figures S2-S5). This phe-
nomenon is consistent with the low confidence often observed
in disordered regions in previous protein structure prediction
or generation tasks, indicating the necessity of our model for
reconstructing and characterizing the diversity of disordered
regions [22].

Residue Features

Sample from N(0, I)

P

B) Architecture of Phanto-IDP.

Generation of unseen conformations

For the generation task, we first employed evaluation metrics
similar to those utilized in reconstruction task, calculating RMSD
and distribution of the three main-chain dihedral angles. Here,
we computed one-against-all RMSD within the generated con-
formation ensembles, which helped us observe the diversity of
the generated conformations (Figure 3A). The results show that
RMSD within the three generation sets distribute quite broad,
including pairs of conformations with RMSD greater than 30 A
in the generation of a-synuclein. This indicated that the model
trained on MD trajectories could capture the differences in confor-
mations within the latent space and obtain significantly different
conformations by sampling different regions in the latent space.
Meanwhile, the o angle distribution was well preserved in the
generated ensembles (Figure 3A), while the ¢ — ¢ distribution was
slightly broader than that of MD and reconstruction ensembles
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Figure 2. Evaluation of conformation reconstruction on IDP systems. (A) Pairwise RMSD distribution between unrefined reconstructed backbone
and ground truth (from MD trajectories), 12.5 k conformations from test set are involved in this plot. (B) Distribution of w dihedrals from refined
conformations. (C-E) Ramachandran plot, ground truth structure and reconstructed structure (with side chain shown) of (C) RS1, (D) PaaA2 and (E)
a-synuclein. Average contact maps of MD (in upper triangles) and reconstructed ensembles (in lower triangles) are displayed besides the structures.

Each Ramachandran plot involves 20 k dihedrals.

(Figure 3B). The dihedral distribution in the Ramachandran plot
still remained mostly in the reasonable region, indicating that the
generated conformations could maintain the rationality of the
main-chain structures well.

PCA was utilized on the generated conformations and MD
trajectories simultaneously to explore the relationship between
the global distribution of two ensembles (Figure 4). We calculated
the distance maps for each conformation and flattened them
as high-dimensional feature vectors, which were then subjected
to PCA for dimensionality reduction. The dimensionality-reduced
generated conformation ensembles were found to be consistent
with MD trajectories in their distribution shape. It’s also observed
that the generated ensemble contained samples not observed
in the MD trajectories, indicating that the model could globally
fit the converged Boltzmann distribution of the MD trajectories
and could be used to generate previously unseen conformations.

These conformations might correspond to some saddle points on
the potential energy surface that are difficult to sample using
traditional MD methods.

We further clustered the generated conformations based on
RMSD and visualized the three most predominant cluster centers
(Figure 4A, Figure S6). For each cluster, we displayed five con-
formations including the centroid (in rainbow color); it was evi-
dent that there were significant differences among these cluster
centers, indicating high diversity in the generated conformation
ensembles. For PaaA2, conformations in the first cluster mostly
had two clear helices, the second contained conformations that
owned shorter helices with more disorder and the third cluster
included even more disordered conformations with only one helix.
Additionally, Figure 4B displayed the radius of gyration (Rg) distri-
butions of the MD trajectories, directly generated and refined con-
formation ensembles for the three systems. It could be observed

20z Aienuer gz uo sesn Ayssaaiun Buo] oeir reybueys Aq GEvESY//6ZFPRAG/L/SZ/AI0IME/qIG/ WO dNO"D1WaPED.//:SA]Y WO PaPEOjuMOd


https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad429#supplementary-data

Phanto-IDP | 5

A [ RS1
[ PaaA2
1 a-synuclein
0 5 10 15 20 25 30 % Do o 0 180 200 20 200 280
RMSD within Generated Ensemble w Distribution
1.0
B 150 ‘ RS1 ‘ a-synuclein
100 0.8
0.6
=S

=50 ‘

-100

-150

-150 -100 -50 0

¢

50 100 150 -150 -100 -50

0.0

50 100 150 -150 -100 -50 0 50 100 150

Figure 3. Evaluation of generated conformation ensembles. (A) One-against-all RMSD and distributions within three generated ensembles, respectively.
(B) Ramachandran plot of three generated IDP ensembles. Each Ramachandran plot involves 20 k dihedrals.

that Rg distributions of the directly generated structures were
slightly lower than the actual MD distributions, which was mainly
resulted from lack of side chains. As a proof, Rg distributions
of the refined structures were in good agreement with the MD
distributions. In summary, our model is capable of capturing the
actual conformational diversity and global properties observed in
MD trajectories during the generation process while preserving
the underlying Boltzmann distribution.

Comparison with previous methods

We compared Phanto-IDP with MD and previously developed
deep learning models [16, 17]. The models’ ability to reconstruct
individual conformation in the trajectory was evaluated using
average RMSD, which measured the level of fidelity in capturing
conformational features and diversity at the conformational level.
We also calculated the JS divergence between Rg of conforma-
tion ensembles generated by these deep learning methods and
MD trajectories to assess whether the models could accurately
reproduce the distribution properties of the MD trajectory and
capture the global features of conformational ensembles. Finally,
we recorded the speed of generating conformations using the
converged model on Tesla V100. We generated 50 000 conforma-
tions with each model, which is comparable to the number of
conformations extracted from a 1 us MD trajectory.

The results show that our model has the lowest reconstruction
RMSD and JS divergence on all tested systems, indicating that

Phanto-IDP is a more precise model compared to the previous
deep learning models (Table 1, Table S1). From the record of gener-
ation time for 50 000 conformations, we found that Phanto-IDP did
not consume as much time as AE or VAE when the target protein
got bigger, which complied with the designed model architecture.
Phanto-IDP has a fixed number of learnable parameters (a total
of 142 k), and the computational complexity for different proteins
should be linearly related to the number of input atoms. Since
the features provided only include backbone atoms, the speed of
model reconstruction and generation should be linearly related to
the sequence length of input protein. In contrast, for traditional
fully connected networks, an increase in the length of the input
protein significantly increases the number of model parameters
and computational complexity. Therefore, Phanto-IDP is designed
to operate faster than traditional methods on larger systems.
For the system with 140 residues, a-synuclein, our model could
generate a comparable number and diversity of conformations
to the MD trajectory in approximately 50 s, which was extremely
fast compared to MD and previous models. In practical use, we
trained Phanto-IDP for 400 epochs to ensure sufficient conver-
gence (although we observe that the loss function converges in
around 200 epochs). This training process took 30.91 h on «-
synuclein. In other words, we could complete training process
and generate any number of conformations within 2 days, which
was significantly faster compared to the 270 h required for MD to
obtain a 1 us equilibrium system.
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Enhanced sampling

Here, we proposed two scenarios suitable for using Phanto-IDP as
an enhanced sampling technique. The first scenario involved
using the model to interpolate the conformational space on
existing large-scale trajectories. Effective and continuous

conformational space interpolation could help us characterize
more meticulously the dynamic properties of the target protein,
especially how the protein transits from one macrostate to
another. This is crucial for understanding proteins, especially
the physiological properties of IDPs. The second scenario
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Table 1: Comparison of Phanto-IDP against traditional methods.
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Protein Method Avg. RMSD, A JS divergence of Rg Speed
RS1 MD (1 us) 24514 h
AE 9.892 0.121 13.61s
VAE 7.115 0.905 64.26 s
Phanto-IDP 0.511 0.036 28.22s
PaaA2 MD (1 us) 251.75h
AE 9.417 0.514 49.72's
VAE 8.341 1.823 87.03 s
Phanto-IDP 0.885 0.093 34.54s
a-Synuclein MD (1 us) 270.50 h
AE 12.433 1.223 79.09 s
VAE 10.417 1.892 111.40s
Phanto-IDP 2.714 0.105 50.60 s

Bold values represents best performance among all methods.

involved training on short MD trajectories and generating unseen
conformations that might be rare even in long trajectories or
REMD. These novel conformations could either be used for further
MD simulations or help traditional MD overcome barriers that are
difficult to cross.

We demonstrated the success of Phanto-IDP in these two
enhanced sampling tasks through two tests. For the first task,
we selected two rather different conformations from the three
target IDP systems and used Phanto-IDP to linearly interpolate
these two conformations in the latent space of the model. A
collection of conformations on this path was obtained through
the decoder and was visualized in Figure 5 (left). The interpolated
conformations performed a continuous transition, indicating the
potential pathway of how the target protein transited from one
discrete conformation to another. We mapped the interpolated
conformation collection to the PCA space constructed in the
previous generation task and observed their spatial distribution
relationship (Figure 5, right). The linear interpolation in the latent
space of the model exhibited an obvious nonlinear path in the PCA
space, proving that the latent space captured complex nonlinear
features of target systems. From the PCA result, we found that the
interpolated path might well cross areas that was not sampled in
MD, meaning that the generated ensemble is of diversity beyond
the original trajectories.

For the second task, we trained our model on a relatively
short MD trajectory and compared the properties of the generated
ensemble with those of an REMD trajectory.

We computed the one-against-all RMSD and ¢ — ¢ distributions
within the generated conformational ensemble and compared
them with trajectories from traditional MD and REMD. We found
that the RMSD distributions of the three methods were essentially
the same (Figure 6A), indicating a similar level of conformational
diversity. However, from the Ramachandran plot, it was observed
that the generated conformational ensemble sampled a wider
range of dihedral angles, indicating that the model likely sampled
conformations unseen in both conventional MD and REMD
(Figure 6B). To validate this point, we further performed PCA
dimensionality reduction on the generated conformational
ensemble and two MD trajectories, followed by clustering analysis
based on RMSD (Figure 6C-E). The sampling ranges in PCA space
of the generated ensemble, conventional MD and REMD were
not significantly different. However, from the clustering results,
the conformations sampled by MD were mostly in a relatively
disordered state, possibly due to the short simulation failing to
adequately sample folded protein conformations. Nevertheless,
in the generated ensemble from Phanto-IDP trained on short
simulation, we observed 5.62% of structures in a folded state,

and these structures already showed a tendency to form helices.
Although the proportion of folded conformations generated by
our model was still lower compared to the 18.3% sampled in
REMD, considering that such folded conformations were not
present in the training set, the model was proved to be able to
cross energy barriers and sample novel conformations that were
difficult to explore in conventional MD.

DISCUSSION

We utilize a compact deep learning model, Phanto-IDP, to learn
from multiple trajectories of IDPs and structured proteins,
demonstrating its ability to generate reasonable and diverse
conformations and perform enhanced sampling tasks. The model
is trained on all-atom molecular dynamics simulation data,
utilizing graph networks to extract protein features and efficiently
generating conformational ensembles unseen in the trajectories
through a variational sampling technique and a transformer-
based decoder. As there’s no physics-based iterative sampling
process, the model generates conformations much faster
compared to traditional MD or enhanced sampling methods.
Despite this speed advantage, the generated conformation
ensembles retain the global distribution properties observed in
the trajectories, indicating that the generated ensembles conform
to the Boltzmann distribution as convergent trajectories.

In the initial stages of our research, we employed a multilayer
perceptron (MLP) as the decoder in our model. However, the
generated conformations exhibited numerous clashes and
inconsistencies. To address this challenge, we transited to a
transformer-based decoder architecture, resulting in a noticeable
improvement in reconstructing conformations. Nevertheless,
we still faced challenges when it came to generating novel
conformations that met our expectations. Assigning a high weight
to the KL loss could be a solution, but it also led to problems like
posterior collapse and hinder overall training progress, a gradual
increasein the weight of the KL loss during training. This approach
struck the right balance between reconstruction and generation
performance, ultimately shaping the training scheme of Phanto-
IDP. The training process for all three versions of Phanto-IDP is
shown in Figure S7.

Compared to previous deep learning-based all-atom enhanced
sampling methods, Phanto-IDP is SE (3) equivariant and can more
accurately capture protein backbone and global features. The
performance of our model in enhanced sampling is comparable
to traditional methods like REMD, suggesting that Phanto-IDP is
an efficient enhanced sampling tool. In addition, we compared
with the general protein conformation generation models, such as
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structure on the right denotes the end point. The colors of the output conformations correspond to their positions in the latent space, illustrating the
gradual change in protein structure along the interpolation path. (A) RS1. (B) PaaA2. (C) e-Synuclein.

FoldingDiff and EigenFold, to forecast the conformational ensem-
bles of our selected IDP systems [20, 23]. It's important to note that
these general models are typically trained on datasets like PDB
or CATH, which contain limited information regarding disordered
regions. These models exhibited worse performance than that
of Phanto-IDP, as illustrated in Figure S8. Furthermore, Phanto-
IDP is characterized by its compact size, featuring only 142 k
parameters. Numerous studies have confirmed that augmenting
the size of transformer-based models often leads to enhanced
performance [2, 24]. Therefore, incorporating more sophisticated
and larger components into Phanto-IDP might yield improved
generation capabilities.

Phanto-IDP cannot be directly transferred from one system to
another without additional training. Though the model size does
not change with the size of the target protein, direct transfer
might lead to severe misjudgment of structure details. However,

ab initio training does not take a long time as MD simulation
consumes. In our cases, it takes no longer than 2 days on proteins
with under 200 residues using one Tesla V100.

In this study, our model performs satisfying in conformation
reconstruction, generation and interpolation (Figures S2-S5, S9-
S15) on 13 protein systems, thus demonstrating its robustness.
However, since we only train the model on MD trajectories, it is
challenging to achieve better performance in replicating experi-
mental observations. In terms of Rg, the model-generated ensem-
ble reaches a level very close to the MD trajectories, but there
is still a significant deviation between the mean Rg values of
the simulated and generated ensembles and the experimental
values. Regarding J-coupling, we obtain six IDP systems with
experimental values among the 10 tested ones. In the case of
RS1 and drkN SH3 domain, J-coupling values of the generated
ensemble are closer to the experimental values compared to MD
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simulations. However, the generated results are not as good as
MD simulations for the other four systems (Figure S16). Consid-
ering that J-coupling calculations should only depend on dihedral
angles, we presume that the instability in J-coupling performance
is due to the fact that the dihedral angle distributions in the gener-
ated conformation ensemble are consistently broader than those
within MD simulations. In reality, broader distribution of dihedral
angles in experimental structures might result in better generated
results than MD simulation, or conversely, it might lead to worse

result. In this regard, we believe that in the next step, we should
involve pre-training the model on the PDB database, enabling
it to capture the diversity present in experimental structures,
followed by fine-tuning with MD simulation trajectories specific
to different systems [25]. Additionally, more accurate force fields
and solvent models should be employed for simulations [26, 27].

The model effectively preserved the Boltzmann distribution
observed in convergent trajectories; however, obtaining such
convergent trajectories in practice remains a challenging task
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[21]. Training the model on non-equilibrium systems might lead
to the generated global distribution not capturing real kinetics.
In other words, the enhanced sampling performed by Phanto-
IDP might fail to produce conformation ensembles with realistic
dynamic properties when applied to input trajectories that are
non-equilibrium. To address this issue, on the one hand, we
can restore the known system’s kinetics through simulation-
based resampling [28]. On the other hand, we can improve the
generation approach of Phanto-IDP by incorporating temporal
autocorrelation constraints or constructing hierarchical models
to better capture dynamic properties [29, 30]. Another alternative
worth considering is the use of the Boltzmann generator, which
could offer capability to capture dynamic properties. However,
their use of standard flow models places high demands on
network design, and there have been few developments in this
regard in recent years [31]. Recently, several diffusion models have
emerged, employing energy-based training methods to generate
molecular conformations [25, 32]. This approach, characterized by
its data-free strategy, trains the model to effectively capture the
equilibrium distribution. Such an approach holds the promise
of enhancing Phanto-IDP’s performance in non-equilibrium
systems.

In terms of network design, the architecture of Phanto-IDP is
relatively simple. This is because the model needs to be trained
on the target system, and overly complex designs might lead to
unacceptable training time and memory usage. From a practi-
cal perspective, it is preferable to initially pretrain the network
on multiple systems and fine-tune the network parameters for
specific applications [33]. Although the current Phanto-IDP can
accept systems with different topologies during training, for this
study, we chose not to implement this approach due to concerns
about the instability of cross-system learning. In the next step,
we plan to explore the method of cross-system training and
transform Phanto-IDP into a pretrained conditional generative
model. Several studies have attempted to use diffusion models
to address this task, but due to restriction of complexity, these
studies often work on coarse-grained structural data. We believe
that using the lightweight network architecture of Phanto-IDP
to build a diffusion model has the potential to generate higher-
precision structures.

Using Phanto-IDP for enhanced sampling offers advantages
in terms of both accuracy and time cost compared to previous
methods. However, a challenge arises from the model’s strong
dependence on the training data. For example, training the model
on a trajectory of a protein in its apo state, it remains chal-
lenging to generate possible conformations of the protein in its
holo state. This problem could potentially be addressed through
cross-system training, as it allows the model to receive more
protein topology information during training, thereby assisting
the model to generate more diverse conformations. In the next
phase, we will focus on improving the robustness and diversity of
Phanto-IDP generation by overcoming the limitations of limited
information from MD trajectories through cross-system pretrain-
ing. The code of Phanto-IDP is deposited at https://github.com/
HFChenLab/PhantolIDP.

MATERIALS AND METHODS

Dataset

MD simulations

In our previous works on MD simulation, a series of converged
simulations on IDP systems were obtained [34, 35]. Here we chose
10 IDPs and four ordered proteins of length less than 200 amino

acids and properties as our main target (Table 2). We simulated
the proteins with force field ESFF1 and solvent model OPC3 for
1 us and extracted 50 000 conformations at 0.02 ns interval
for model training and evaluation [36, 37]. We comprehensively
evaluate the performance of our model in reconstructing and gen-
erating protein conformations, including metrics like RMSD, ¢ — ¢
distribution, » angle distribution, contact map, Rg distribution,
PCA and clustering results. The trajectories involved in this study
were proved to converge in the previous research [27].

Data split

For the 10 IDPs and three structured protein systems, to train
our model to fully capture the diversity of their conformation
ensemble, we shuffled the trajectories from MD simulation and
split the dataset into the training set, evaluation set and test
set according to a preset proportion. The similarity between the
training set and the test set is evaluated through RMSD and PCA
analysis as shown in Figure S17. Conformations from the two sets
obey similar distribution, while they typically own an RMSD of
over 2 A, indicating that they are different in local characters.

For short MD simulation on small peptide AAQAA3, we use 80%
of the trajectory for training as we expect that the model capture
most of the dynamics feature.

Graph representation

We preserve backbone atoms (N, CA, C) for each input confor-
mation and construct a crystal graph at the atomic level. Let
G = (V,€) be a graph, where V = (v4,...,Un) € R™X denotes
the set of vertices with x-dimensional input features and £ =
(e11,€12,...,emr) € RM*x@ represents the set of edges with w-
dimensional input features. Here, m is equal to 3x residue number
of the input conformation, as we only retain three backbone
atoms for each residue. When calculating the adjacency matrix,
we use the K-Nearest Neighbors (KNN) algorithm which connects
only k nodes (k = 30 by default) that are nearest in physical
distance for each node.

For node feature, we treat N, CA, C in the 20 standard residue
types separately, which yields 60 atom types, so that the node
feature is constructed as a one hot vector with @ = 60. For edge
feature, we combine three SE (3) equivariant characters that can
define both global and local structures well:

(i) Physical distance between two atoms: We calculate the
Cartesian distance between each two atoms connected in
graph and generate a vector representation using gaussian
basis expansion. We sampled 16 means uniformly from [0,
20] for Gaussian basis in this work.

(ii) Relative atom position in local frames: We treat every atom
as center of a local reference frame 7}, W; m,, which is cal-
culated with two bonded atoms A, C and the center atom B
(Equations (1)—(3)).

- _ BCxAB
™= [exad] M)
- ."-TEXB_E:
" = [Rea] @)
BT x T )

In any edge e;;, we project atom j (i) onto the frame of atom i (j)
so that we get two relative atom positions as an additional feature
in adjacent matrix. Calculation of local frames and projections is
done with the mylddt toolset (https://github.com/gjoni/mylddt).
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Table 2: Protein systems and corresponding properties involved in this study

Protein Length, aa Experimental Rg Simulation condition
Intrinsically disordered proteins

RS1 24 12.62 [1, 2] ESFF1/0OPC3

PaaA?2 71 22.4 [4] 1000 ns [3]
a-Synuclein 140 31.5[5, 6]

Histain5 24 13.8 [7, 8]

AB40 40 12 [9, 10]

AB42 42 12.4 (10, 11]

drkN SH3 domain 59 16.7 [12]

ACTR 71 25 [13]

R17 100 22.9 [14]

P15PAF 110 28.1 [15]

Folded proteins

CspTm 66 11.07 [16] ESFF1/0PC3
Ubiquitin 76 11.63 [17] 1000 ns (3]

SPR17 118 118 [6]

AAQAA3 15 - ESFF1/OPC3 500 ns

REMD 1200 ns [18]

(iif) Bond types: The final part of edge feature is binary, where
1 represents that two atoms are bonded in actual structure
and O for otherwise.

Model architecture

Phanto-IDP is designed to be a generative graph neural network
whose encoder is composed of three graph convolutional layers
and decoder consists of three transformer blocks. For generation
task, we added a variational layer between the encoder and
decoder, the same as that in a variational autoencoder. In this
section we'll introduce the three parts of our model separately.

Encoder

As described above, we processed the input protein conformations
into crystal graphs. Here, we employ one hot vectors for vertices
features, so an embedding layer is utilized for transforming the
input discrete features into a 64-dimensional continuous vector
as input of encoder.

We used graph convolutional network (GCN) as encoder
because it can effectively incorporate edge information and
information from neighboring nodes into the current node [38].
The message passing rule in the k™ layer of GCN is defined as
follows:

® _ 0 g R k)
hiJ =U" ®e; O (4)

Ui = vt 4 Sy o (RO W + b)) © ReLU (RO W + 1) (5)
where h;? denotes the hidden representation of v¥ with neighbor
information concatenated (Equation (4)). The hidden represen-
tation then undergoes an edge-gating mechanism (Equation (5))
to incorporate different interaction strengths among neighbors,
where o denotes a sigmoid function, W, b{" are gate weight
matrix and bias separately and W, b are convolutional weight
matrix and bias, respectively.

Variational inference module

To ensure stronger generalization and generation ability, we
added a variational inference module between the encoder and
decoder, referring to the variational autoencoder (VAE) described

by Kingma and Welling [39]. This module first transforms the
node feature obtained from encoder to a low-dimensional latent
space through a fully connected (FC) layer. Then two FC layers
are utilized for calculation of mean and logarithmic variance
matrices in the latent space. With the trick of reparameterization
(Equation (6)), we sample from the neighboring area of the
encoding feature in the latent space but not just the exact point.

Z=p+oxexT (6)

where u is the mean matrix and o is the variance matrix. e is a ran-
dom variable sampled from a standard normal distribution and T
denoting temperature determines the actual scale of sampling. T
issetas 0.02 in default for generation tasks in this study, as we find
that under this temperature the generated conformations are of
high rationality while capturing enough diversity.

With variational inference module, our model can learn not
only the point information corresponding to the input confor-
mation but also the distribution information in the whole latent
space. During training, we use KL divergence to limit the neigh-
boring area of the sampled distribution to be close to the standard
normal distribution. In this way, the well-trained model is able to
generate a large number of unseen protein conformations with
seeds from normal distribution.

Decoder

The decoder receives features sampled from the variational infer-
ence module and further transform the latent features into Carte-
sian coordinates of corresponding protein conformation. Here,
idpGAN is consulted to construct our decoder that consists of
three transformer blocks; each contains a self-attention layer and
an update module (Figure 1) [21].

Loss function and training strategy

As we build a hybrid generative model based on the principle
of VAE, the loss function used in training model is naturally
composed of two parts (Equation (7)), reconstruction loss and
Kullback-Leibler (KL) loss.

L= WReconERecon ~+ wir Lk, (7)
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Table 3: Weight setting of KL loss and FAPE loss, respectively

Weight Value erations
WRecon 10.00.3m, 1.00.1m
wKL 1.0 x 1055, 5.0 x 10505, 1.0 x 1055,

5.0 x 105_031(, 0.0150k, 0.0550k, 0.10.1Mm

Reconstruction loss

Here, to construct an SE (3) equivariant model, we utilize the
frame-aligned point error (FAPE) as the reconstruction loss to
ensure that the output coordinates are equivariant to the input
ones in rotation and translation [1, 40]. We first transform the
output backbone atom coordinates into corresponding residual
local frames using the Gram-Schmidt process (Equations (1)—(3)),
then FAPE loss on backbone is calculated according to AlphaFold2
(Equation (8)), which can be written as followed.

1
»cRecon = 7211'

Nframes Natoms

‘Tiiutput) o X j(outpu) = Tigy © Xjan H

8)
where T; denotes local frame of the i — th amino acid and Tg)-
is coordinate vector of the j — th backbone atom. Here, output
represents the conformations generated by our model and gt
represents the ground truth in model training, in other words, the
conformations from MD simulation.

KL loss

KL loss is a regularization term that encourages the encoder to
produce latent variables that are close to a standard normal dis-
tribution. This term measures the difference between the learned
distribution of the latent variables and the target distribution,
which is a standard normal distribution in this work (Equation
(9)). The KL loss term helps to constrain the latent space to be
more interpretable and easier to manipulate, which can improve
the quality and interpretability of the generated data.

Lo = B[ 1egr] ©

where p and o are the mean and variance matrix in Equation (3),
respectively.

Weight setting

In training the model, we find that it's much easier to optimize
KL loss than to optimize reconstruction loss. However, excessive
optimization of KL loss results in loss of information from encoder,
which is referred to as posterior collapse [41]. Posterior collapse
can severely affect the reconstruction performance of the model,
so we dynamically set the weight of KL loss to prevent such a
problem [42]. Detailed weight setting is recorded in Table 3 as
follows.

Key Points
e This is the first time to build a graph-based encoder and
transformer-based decoder model (named Phanto-IDP)
to generate accurate protein backbones.
e The performance of Phanto-IDP is better than that of
other methods on all 10 IDPs and four structured pro-
teins.

e Phanto-IDP could also sample unseen conformations at
an extremely low computational cost.

SUPPLEMENTARY DATA

Supplementary data are available online at http://bib.oxford
journals.org/.
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