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Intrinsically disordered proteins or intrinsically disor-
dered protein regions comprise a large portion of
eukaryotic proteomes (between 35% and 51%). These
intrinsically disordered proteins were found to link with
cancer and various other diseases. However, widely
used additive force field parameter sets are insufficient
in quantifying the structural properties of intrinsically
disordered proteins. Therefore, we explored to a
systematic correction of a base additive force field
parameter set (chosen as Amber ff99SBildn) to correct
the biases that was first demonstrated in simulations
with the base parameter set. Specifically, the /w
distributions of disorder-promoting residues were
systematically corrected with the CMAP method. Our
simulations show that the CMAP corrected Amber
parameter set, termed ff99IDPs, improves the /w
distributions of the disorder-promoting residues with
respect to the benchmark data of intrinsically disor-
dered protein structures, with root mean-squared
percentage deviation less than 0.15% between the
simulation and the benchmark. Our further validation
shows that the chemical shifts from the ff99IDPs
simulations are in quantitative agreement with those
from reported NMR measurements for two tested IDPs,
MeV NTAIL, and p53. The predicted residue dipolar cou-
plings also show high correlation with experimental
data. Interestingly, our simulations show that ff99IDPs
can still be used to model the ordered state when the
intrinsically disordered proteins are in complex, in
contrast to ff99SBildn that can be applied well only to
the ordered complex structures. These findings confirm
that the newly proposed Amber ff99IDPs parameter
set provides a reasonable tool in further studies of
intrinsically disordered protein structures. In addition,

our study also shows the importance of considering
intrinsically disordered protein structures in general-
purposed force field developments for both additive
and non-additive models.

Key words: CMAP, ff99IDPs, IDPs force field, MD simulation,
φ/w dihedrals

Received 28 January 2014, revised 15 February 2014 and
accepted for publication 24 February 2014

Intrinsically disordered proteins (IDPs) and intrinsically dis-
ordered regions (IDRs) in structured proteins have been
recently researched (1) to exist widely in eukaryotic proteo-
mes: Up to 35–51% of proteins were predicted with more
than 40 consecutive disordered residues (2,3). It is thus
very natural to extend the studies of protein functions car-
ried out by folded and mostly rigid structures to those by
intrinsic disordered structures (4–6).

Indeed, IDPs have been proven to be very important in
many cellular processes, such as molecular recognition,
molecular assembly, and protein post-translational modi-
fication (3,6–9). It has been reported that 79% of can-
cer-associated and 66% of cell-signaling proteins contain
IDRs with 30 or more residues (10). For example, tumor
suppressor p53 acts as a connected hub in multiple
signaling networks whose N-terminal and C-terminal
domains are IDRs (10–13). Furthermore, many diseases
are related to these IDPs or IDRs (7,14), such as Parkin-
son’s disease (15,16), Alzheimer’s disease (17–19), can-
cer (10), cardiovascular disease (20), amyloidosis (21),
diabetes (7), and others. All these observations show
the importance of exploring IDPs and their functional
mechanisms.

To obtain better insight into IDPs functions, one important
and direct way is to study the relationship between the
disordered structures and functions. As a robust computa-
tional tool, molecular dynamics (MD) simulation has been
widely used for these studies. Nevertheless, the MD simu-
lation community still faces two major limitations: (i) current
computation power limits the timescale of MD simulations
up to microsecond timescales, which is still far shorter
than many important biological timescales (sampling prob-

lem); (ii) current accuracy in the potential energy functions
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may lead to biased conformations and energetics (force
field problem) (22,23).

For large-scale biological macromolecules, molecular
mechanics (MM) empirical functions (force field) are
broadly utilized, such as assisted model building with
energy refinement (AMBER), Chemistry at HARvard Macro-
molecular Mechanics (CHARMM), GROningen MOlecular
Simulation (GROMOS), and optimized potential for liquid
simulations (OPLS) (24–28). All these existing potential
energy functions are empirically parameterized, and their
test sets are all based on crystal structure databases of
folded proteins, such as Protein Data Bank (PDB; 29) and
Cambridge Crystal Data Bank (CCDB; 30). Unfortunately,
the samples of IDPs in PDB or CCBD are often much
lower. This may cause biases that the conformations of
IDPs in simulations are over-stabilized. In contrast to fixed
charge additive force field, general-purposed polarizable
force fields could partly overcome higher energy barrels
and sample more conformations between order and disor-
der structures (31–33). However, the development of
polarizable force field has yet reached the stage of routine
applications for typical proteins, in part due to the extra
computational cost (32,34).

In this study, we explored the direction of a special pur-
pose force field for IDPs based on specific CMAP cor-
rections of key disorder-promoting residues from a
standard fixed charge additive force field. The strategy
leads to little overhead in the force field complexity and
computational overhead in MD simulations of typical
IDPs. Of all the function terms that constitute a MM
potential energy function, backbone torsion (dihedral)
energy is apparently the most significant and directly
determines the secondary structure. For example, the
force fields of ff94 and ff99 over-stabilize a-helical confor-
mations (35). To eliminate this bias, a new set of back-
bone torsion parameters was successfully introduced
with ff99SB (36,37).

Specifically, we analyzed the crystal structures in PDB and
sampled the backbone dihedrals (φ/w) distributions in both
ordered and disordered regions. Our data show that the
φ/w distributions of residues in disordered fragments are
significantly different from those in ordered fragments. To
introduce corrections in a minimal perturbation strategy,
we only corrected the main chain dihedral terms for the
eight disorder-promoting residues, A, G, P, R, Q, S, E,
and K as reported in the literature (1,6,38,39). Residue-
specific grid-based energy correction maps (CMAP; 40,41)
were employed to achieve the best possible agreement
with database backbone distributions.

Two IDPs with NMR experimental chemical shifts or resid-
ual dipolar couplings (RDCs) values were used as repre-
sentative structures for validating our new IDPs force field
(termed ff99IDPs): C-terminal domain of measles virus
nucleoprotein (MeV NTAIL) in both free and bound states

(42–47); N-terminal domain of p53 in the free state
(48,49).

Methods

Data collection of disordered protein structures
Of 16 548 structures with resolution value R < 0.25 were
downloaded from PDB. DSSP (50,51) was used to assign
the secondary structures and calculate dihedral angles.
Five or more consecutive residues classified as ‘no sec-
ondary structure’ by DSSP were used as models of IDPs.
Actually, we tested different numbers of residues for
IDPs, from 5 to 13 coil residues. We found the φ/w distri-
butions of four principal regions without significant differ-
ences for different numbers of residues (from 5 to 13).
The results are shown in Figure S1. To collect enough
samples, five or more disordered regions were chosen as
the standard of IDPs. Furthermore, its soundness is vali-
dated below by independent comparison of simulation
and experiment of real IDPs. In summary, 42 774 disor-
dered fragments containing 267 751 pairs of backbone
dihedrals were extracted and analyzed. These subset
data were used as a Ramachandran plot for IDPs or
IDRs. All the disordered dihedrals were taken as parame-
terization benchmark.

CMAP method
MM potential energy is calculated in Amber force fields as

EMM ¼ Ebond þ Eangle þ Enon�bond þ Edihedral (1)

Even with ever improving performance in generations of
force fields, distinct difference between MD generated and
crystal structure observed φ/w distributions still exists. In
this study, we utilized the method of grid-based energy
correction maps (termed CMAP) (40,41,52) to minimize
the difference in the dihedral angle distributions. The
method is currently applied in the CHARMM simulation
package and can also be compatibly deployed in the lat-
est Amber package (53,54). Briefly, an additional energy
term of ECMAP was added to the original Amber potential
energy function to correct the dihedral energy as eqn (2).

EMM ¼ Ebond þ Eangle þ Enon�bond þ Edihedral þ ECMAP (2)

All other energy terms except the dihedral energy term
remain the same as a chosen base additive force field. Fur-
thermore, only the backbone dihedral parameters for the 8
disorder-promoting residues were optimized while the
parameters for the rest of the 12 residues remain the same to
minimize the perturbation to folded structure distributions.

In this initial study, the parameterization was conducted
with di-residue models only (Nme-X-Ace, X means a cer-
tain amino acid), which contain φ and w angles for the
central residues X. Similar model compounds were also
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used in the Amber ff94 and ff99SBildn parameter develop-
ments (37,55). Of course, further optimization based on
short peptides and full proteins would further improve the
quality of the force field, but the limitations would be the
availability of benchmark data.

CMAP is a matrix of corrections on dihedral grids with the
corrections between grid points calculated with a two-
dimensional bicubic interpolation method (41). The correc-
tion matrix for each residue was set up with a dihedral
angle grid in the resolution of 15 degrees. Specifically, we
used relative conformational free energies (DGi,j) converted
from φ/w distributions from the disordered protein struc-
tures to compute the correction matrix

DGi;j ¼ �RT ln ðNi;j=N0Þ (3)

where Ni,j is the population of φ/w dihedral bin (i, j) and N0

is the population of the most-populated bin.

Using eqn 3, sparsely populated bins could have huge rel-
ative free energies, leading to over-correction. To over-
come this limitation, we used an iterative optimization
process to determine the CMAP correction matrix self-
consistently. Here, CMAP energy terms were calculated at
each iteration step with eqn 4

ECMAP
i;j ¼ DGDB

i;j � DGMD
i;j (4)

where DGDB
i;j and DGMD

i;j are, respectively, database and
MD simulation converted free energies for φ/w dihedral bin
(i, j). The iteration starts with a CMAP correction matrix ini-
tialized as zero, so the initial DGMD

i;j are derived from the
simulations in the base additive force field, ff99SBildn. At
each iteration step, the CMAP correction matrix derived
from the previous step’s simulations was added to the
base force field ff99SBildn. Root mean-squared deviations
of population (termed RMSp) among all bins were calcu-
lated to quantitatively measure the difference between MD

Figure 1: Dihedral distribution of disordered benchmark data, PDB structures, ff99SBildn, and CMAP optimization for Ala, Gly, and Pro.
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and database populations. An optimization was conducted
for every disorder-promoting residue to ensure the conver-
gence of RMSp, that is, less than 0.15%. In general, up to
five iteration steps were needed for all eight disorder-
promoting residues.
Once the convergence was achieved, a further two-sam-
ple Kolmogorov–Smirnov (KS) test was employed to
assess whether the optimized MD population is signifi-
cantly different from the database population. Note that
the KS test, as a nonparametric test, is a good choice
for this study (56–58) because the distribution of φ and w
dihedrals in the dihedral angle space (shown in Figure 1)
apparently does not satisfy any type of probability distri-
bution (normal or uniform distribution) for a parametric
test.

Interfacing with existing Amber force field tools
The CMAP parameters of the 8 disordered residues were
collected in a predefined CMAP parameter file, and the
CMAP parameters of the remaining 12 residues were set
to zero, so that the base ff99SBildn force field was used for
these residues in all simulations. Starting topology and
co-ordinate files were first generated with the LEaP module
with the base force field. The addition of the CMAP term to
the topology file was realized with a PERL script. Then, stan-
dard procedure was performed with MD simulation.

Molecular dynamics simulations
All the MD simulations in CMAP optimizations and subse-
quent validations were conducted with AMBER12. Di-resi-
due models of the eight disorder-promoting amino acids
were generated in the LEaP module. Counter-ions were
used to maintain system neutrality. All systems were sol-
vated in a truncated octahedron box of TIP3P waters with a
buffer of 10 �A. Particle mesh Ewald (PME; 59) was
employed to treat long-range electrostatic interactions with
the default setting in AMBER12. All the MD simulations
were accelerated with the CUDA version of PMEMD (60,61)
in GPU cores of NVIDIA� Tesla K10 (Santa Clara, CA,
USA). The SHAKE algorithm (62) was used to constrain
bonds involving hydrogen atoms. A total of 20 000-step
steepest descent minimization was performed to relieve
any structural clash in the solvated systems. Then, 20 ps
was used to heat up and 10 ps was briefly equilibrated in
the NVT ensemble at 298K with PMEMD. Langevin dynam-
ics with a time step of 2 fs were used in the heating and
equilibration runs with a friction constant of 1 ps�1.

At each iteration step, at least 100-ns MD simulation was
performed to collect samples. To reduce correlation
among sampling points, data were collected every 5 ps.
Because dihedral samples of proline, arginine, and lysine
are more than 10 000 (proline has the most samples
~20 000), longer simulations on these residues were per-
formed, which indicate that 100-ns simulations were suffi-
cient for the CMAP optimizations.

In the subsequent validation simulations with the free and
bound MeV NTAIL and free p53, five trajectories with
100 ns each were collected. As there is no structure avail-
able for free IDPs, the initial protein structures were
obtained from PDB in bound state: the bound MeV NTAIL

structure [residues 484–504, bound with XD of phospho-
protein, 1T6O (63)] and bound p53 [residues 17–29,
bound with MDM2, 1YCR (64)]. Furthermore, these IDPs
have experimental chemical shifts or RDCs, and it will
be helpful to compare the simulation and experimental
observation.

Table 1: Dihedral distribution of the four principal regions for
IDPs benchmark data and PDB database

Regions

Population (%)

Disorder PDB Difference

A
aR 5.72 (8.03) 71.77 (79.6) �66.05 (�71.58)
aL 1.90 (2.67) 0.96 (1.06) 0.94 (1.61)
PPII 52.45 (73.58) 6.65 (7.37) 45.80 (66.21)
Β 11.21 (15.73) 10.79 (11.96) 0.42 (3.76)

E
aR 4.35 (6.91) 70.7 (81.13) �66.35 (�74.21)
aL 2.48 (3.94) 1.63 (1.87) 0.85 (2.08)
PPII 45.0 (71.54) 6.89 (7.91) 38.10 (63.62)
Β 11.07 (17.61) 7.93 (9.09) 3.15 (8.51)

G
aR 2.85 (6.6) 29.33 (42.07) �26.48 (�35.46)
aL 16.41 (37.98) 30.12 (43.2) �13.71 (�5.22)
PPII 19.56 (45.28) 4.17 (5.98) 15.39 (39.29)
Β 4.38 (10.14) 6.10 (8.74) �1.72 (1.39)

K
aR 5.63 (9.56) 63.95 (76.06) �58.33 (�66.5)
aL 2.29 (3.9) 2.69 (3.2) �0.40 (0.7)
PPII 38.34 (65.16) 8.30 (9.87) 30.05 (55.29)
Β 12.59 (21.39) 9.14 (10.88) 3.44 (10.51)

P
aR 4.47 (5.1) 55.06 (59.24) �50.59 (�54.14)
aL 0.01 (0.01) 0.01 (0.01) 0 (0)
PPII 83.02 (94.79) 37.85 (40.73) 45.17 (54.06)
Β 0.09 (0.11) 0.03 (0.03) 0.07 (0.08)

Q
aR 3.80 (6.44) 67.16 (78.46) �63.35 (�72.02)
aL 3.22 (5.46) 2.17 (2.53) 1.06 (2.93)
PPII 34.26 (58) 6.62 (7.73) 27.64 (50.27)
Β 17.78 (30.1) 9.65 (11.28) 8.13 (18.83)

R
aR 5.65 (9.28) 62.68 (74.57) �57.04 (�65.29)
aL 2.61 (4.29) 1.94 (2.31) 0.67 (1.98)
PPII 35.81 (58.84) 7.97 (9.48) 27.84 (49.35)
Β 16.79 (27.6) 11.47 (13.64) 5.33 (13.96)

S
aR 5.30 (7.95) 56.18 (67.17) �50.88 (�59.22)
aL 1.36 (2.04) 1.58 (1.89) �0.22 (0.15)
PPII 44.31 (66.47) 9.34 (11.17) 34.97 (55.3)
Β 15.69 (23.54) 16.54 (19.77) �0.84 (3.77)

Numbers in parentheses are relative fractions within the four prin-
cipal regions.
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A

B

Figure 2: CMAP optimization. (A) Difference between disordered survey data and CMAP optimization. (B) RMSp over five steps of
optimization.
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Data analyses
Root mean-squared deviations (RMSd), fluctuations (RMSf),
and dihedral angles in MD trajectories were calculated with
the PTRAJ module in AMBER12 and AmberTools13 (54).
Structural clustering was conducted with the kclust program
in the MMTSB tool set (65). Secondary structures of each
snapshot were identified with DSSP (50,51). Experimental
chemical shift data of free and bound MeV NTAIL and free
p53 were retrieved from the Biological Magnetic Resonance
Data Bank (66) with Accession Numbers 6566, 6567, and
17760, respectively. Computational secondary chemical
shift data for the simulated structures were calculated with
SPARTA version 1.01 (67). Helicity was calculated as
the helical (predicted by DSSP as a-helix, 3/10 helix, and
p-helix) population during the production runs. Prediction
of NHN RDC was performed with flexible-meccano (FM)
software (68).

Table 2: Simulation conditions for all systems

System

Force

Field

Counter-

ions Waters Trajectories

Simulation

time (ns)

Free

MeV

NTAIL

ff99IDPs 1 Cl� 2890 10 1000

ff99SBildn

Free

p53

ff99IDPs 2 Na+ 2390 10 1000

ff99SBildn

Bound

MeV

NTAIL

ff99IDPs 5 Cl� 5097 2 200

ff99SBildn

Free

MeV

NTAIL (PB)

ff99IDPs 1 Cl� 0 2 200

ff99SBildn

Free

p53 (PB)

ff99IDPs 2 Na+ 0 2 200

ff99SBildn

A B

C D

Figure 3: RMSd and RMSf for bound and free MeV NTAIL under different force fields. (A) Ca RMSd of free state with ff99IDPs. (B) Ca
RMSd of free state with ff99SBildn. (C) RMSf for free state with ff99IDPs and ff99SBildn. (D) Cartoon representation of crystal structure for
bound state MeV NTAIL with XD of P protein.

258 Chem Biol Drug Des 2014; 84: 253–269

Wang et al.



Results and Discussion

Database statistics
To justify our development for the IDPs force field, the
dihedral angle distributions of eight disorder-promoting
residues (A, E, G, K, P, Q, R, and S) were first analyzed.
Table 1 shows the statistics of dihedral angle distributions
for the loops with five or more residues, all PDB crystal
structures and their differences in four principal regions
(shown in Figure 1; 37). The data show that the dihedral
angle distributions of disordered structures are significantly
different from those of PDB structures. At the same time,
the published validation studies of ff99SBildn show that
the force field reproduces well experimental S2 parameters
on alpha-helices and beta-sheets, while the main errors

are on the loop regions (37). This is consistent with the
observations that currently widely used force fields work
well for folded proteins but is limited in representing IDPs
because their biases toward folded protein structures. To
further confirm the property of widely used force field, the
dihedral distributions for residues A, G, and P were plotted
as scatters and are shown in Figure 1 (other 5 disorder-
promoting residues were plotted in Figure S2). The RMSp
between IDPs and ff99SBildn is about 0.4917%, 0.2195%,
and 0.4310%, for Ala, Gly, and Pro, respectively. Two-sam-
ple KS test was used to check the statistical significance
for the cumulative populations for all the dihedral grids
between disorder benchmark and ff99SBildn simulated
data, as shown in Figure S3. The analysis shows that the
differences for the distributions are statistically significant,

Figure 4: Secondary structures of free MeV NTAIL versus simulation time under different force fields.
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with the P values typically less than 0.001. Therefore, devel-
opment of new additive force filed is necessary for IDPs.

CMAP energy term optimization
In the CMAP optimizations, we first tested the necessary
sampling time during CMAP optimizations. We compared
the RMSps for the different simulation times in the
selected step of CMAP optimizations to disordered data-
base dihedral distributions (shown in Figure S2). For the 8
disorder-promoting residues, the fluctuation of RMSps
became stable after 60 ns, which indicates that 100-ns

simulation is sufficient for the dihedral sampling. More and
longer test on proline, lysine, and arginine also suggests
that 100-ns trajectories are enough for the equilibration
sampling needed for the CMAP optimization.

Over five iteration steps in CMAP optimization, RMSp of
dihedral distribution between MD and benchmark data for
8 disorder-promoting residues gradually decreases and
then remains stable, as shown in Figure 2. The detailed
scatters for disorder benchmark, PDB, ff99SBildn, and
CMAP optimization of five iteration steps are shown in Fig-
ure S3. We also performed KS tests on the cumulative
populations between disorder benchmark and the final
step of CMAP (magenta line in Figure S4), indicating that
the cumulative populations for 8 disorder-promoting resi-
dues are consistent with the benchmark data. This sug-
gests the optimized CMAP reproduces the benchmark
extremely well.

Alanine and lysine are used as two examples to illustrate
the optimization process. Heatmaps of RMSps of alanine
and lysine for each step are plotted in Figure 2A. The blue
blocks represent that the CMAP model has lower popula-
tion and red ones present that the model has higher popu-
lation. Population differences between ff99SBildn and
benchmark data for alanine are concentrated in aR, PPII,
and b regions. For example, PPII region has a population
difference of 18.45%. These differences gradually
decrease during the optimization iteration (total RMSp was
lower than 0.06% in the end). However, for lysine, as dihe-
dral populations in the aL region are low, this region might
be over-corrected at the first step of the CMAP optimiza-
tion (populations in region aL for the new force field,
ff99SBildn and the first step of optimization were 2.29%,
0.00%, and 85.26%, respectively). In addition, regions aR
and b were also slightly over-corrected (the new force field
is lower than ff99SBildn but higher than the first step of
optimization). These over-corrections would lead RMSps
to decrease in the following steps. At the fifth step, popu-
lation differences for the four regions are all lower than
1%, and the total RMSp was 0.05%.

Force field validation
Two typical IDPs (MeV NTAIL and p53) were used to validate
the newly developed force field ff99IDPs. MeV NTAIL has
been shown to have a long intrinsically disordered region,
which could fold into highly ordered a-helices upon binding
to XD domain of measles virus phosphoprotein (69). N-ter-
minal of p53 is also a partly IDPs with four-residue helical
turn. We simulated free MeV NTAIL (residues 484–504) and
free p53 (residues 17–29) in ff99IDPs extensively in explicit
solvent. For comparison, the two proteins were also simu-
lated in ff99SBildn under the same condition. Overall, each
protein was simulated in five independent trajectories of
100 ns in both force fields. RMSd, RMSf, secondary struc-
ture and helicity, φ/w clustering, secondary chemical shift,
and RDC were analyzed and compared with experimental

Figure 5: Structural representations of the top eight clusters of
MeV NTAIL protein with ff99IDPs and ff99SBildn force fields.

Figure 6: The helical propensity of free MeV NTAIL from
ff99SBildn and ff99IDPs simulations.
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observations. The performances of ff99IDPs and ff99SBildn

were also assessed when MeV NTAIL is in the bound state,
for which experimental data are available. Finally, MD simu-
lations for free MeV NTAIL and free p53 were also con-
ducted in the implicit solvents to check the compatibility of
ff99IDPs with implicit solvents. Detailed simulation condi-
tions are listed in Table 2.

Explicit water simulations of MeV NTAIL protein
RMSd and RMSf for the simulated trajectories are shown
in Figure 3A–C. In the free state, RMSd of both ff99IDPs

and ff99SBildn trajectories increased quickly and became
dynamics equilibration after 50 ns. Average Ca RMSfs
show a relatively higher flexibility in ff99IDPs than that in
ff99SBildn, which suggests a larger conformational adjust-
ment in the ff99IDPs simulations. The cumulative average

disorder populations of free MeV NTAIL within 10-ns win-
dow are shown in Figure S5 for ff99IDPs and ff99SBildn,
respectively. An increase of approximately 20% disorder
population is seen over the course of ~50 ns, after which
no further improvement is noted. This suggests that five
independent simulations converged to essentially identical
families of structures after 50 ns.

The secondary structure of every residue versus simula-
tion time in one representative simulation trajectory for
ff99IDPs and ff99SBildn is shown in Figure 4. In ff99IDPs

trajectories, all the helices disrupted before ~40 ns and
transited into random coils or bends; but in ff99SBildn

trajectories, despite the disruption of the flexible terminal
residues, core helical residues 8–12 remain stable.
Detailed information on secondary structure is shown in
Figure S6. To obtain further insight on the conformation

A

C

B

Figure 7: RMSd, RMSf, and secondary structures of bound MeV NTAIL protein with ff99IDPs and ff99SBildn force fields.
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distribution, we conducted structural clustering based on
φ/w dihedrals. The top 8 clusters with their representative
structures for ff99IDPs and ff99SBildn were gathered and
are shown in Figure 5, respectively. The top 8 clusters of
ff99IDPs simulations occupied 21.28% of all snapshots,
while the top 8 clusters of ff99SBildn simulations repre-
sent 56.32% of all snapshots. This indicates that ff99IDPs
protein models are more flexible and sample more con-
formational spaces than ff99SBildn, consistent with the
IDPs characteristics of conformational heterogeneity (70).
Distinct differences can be found between ff99IDPs and
ff99SBildn conformations, especially at the N-terminus,
which is in agreement with the previous observations that
residues near the N-terminus in the IDPs present a low
helical propensity (47,71). Also, the helicity for every resi-
due can be found in Figure 6. The helicity of residues
484–492 modeled by ff99IDPs is lower than that by
ff99SBildn. This is consistent with previous experiment
that N-terminal residues have lower helicity than other
residues (63,71).

To measure the influence of ff99IDPs to IDPs complex, we
also performed simulation on bound MeV NTAIL with MeV P
protein. RMSd and RMSf are shown in Figures 7 A and B,
which suggest that bound MeV NTAIL is very stable. Fur-
thermore, the secondary structure (shown in Figure 7C)
indicates highly ordered structures of the IDPs complex
under both force fields. After 100-ns simulation under IDPs
force field, the RMSd is only 0.807 �A between bound NTAIL

protein and crystal structure. This suggests that ff99IDPs

can still be used to model IDPs complex (44,45).

Explicit water simulations of p53
To further validate the feasibility of ff99IDPs on IDPs, we
performed MD simulations on the free p53 (residues 17–
29) in ff99SBildn and ff99IDPs, respectively. RMSd and
RMSf are illustrated in Figure 8. The RMSd plot for
ff99IDPs trajectories demonstrates higher fluctuations than
that of ff99SBildn. The Ca variations in p53 in ff99IDPs are
also slight higher than that in ff99SBildn.

A

C D

B

Figure 8: RMSd and RMSf of free p53 under ff99SBildn and ff99IDPs force fields.
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The cumulative average disorder populations of free p53

from ff99IDPs and ff99SBildn within 10-ns window are
shown in Figure S7, respectively. Similar to MeV NTAIL, the
disorder populations reach dynamic equilibrium after
50 ns. This suggests that 100-ns simulation is sufficient to
collect enough samples of structures for free p53.

To further understand the conformational change in p53
while free from MDM2, the secondary structure assign-
ments calculated by DSSP program are shown in
Figure 9. In the trajectory under ff99SBildn force field, p53
remains as a stable helical secondary structure during the
simulation, which the helical propensity of residue 19–24 is
more than 40%. In contrast, the secondary structures
dynamically change between helix and random coil for
ff99IDPs (for more detailed information in Figure S8). This
fully illustrates the instability of p53 as partially intrinsically

disordered protein. Interestingly, the helical population for
residues 21–24 is nearly 30% that is in quantitative agree-
ment with the experimental observation (48).

Structural cluster was also used to shed light on the heter-
ogeneity of p53 structures. The top 8 clusters for each
simulation under ff99SBildn and ff99IDPs were extracted
and are shown in Figure 10. The top 8 representative
structures with ff99SBildn and ff99IDPs occupy 70.36%
and 62.54% of the conformational ensemble, respectively.
Similar to MeV NTAIL, conformations in ff99IDPs are more
heterogeneous than those in ff99SBildn (70). Five clusters
of the structure have helical secondary structure near resi-
dues 21–24 for ff99IDPs, which is consistent with experi-
mental data. However, the helical secondary structure is
observed on the fragment for residues 19–25, which is
slight longer than that observed in experiment.

Figure 9: Secondary structure and helical propensity of free p53 under ff99SBildn and ff99IDPs force fields.
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Comparison with experimental NMR chemical shift
To further evaluate the performance of ff99IDPs, average
secondary chemical shifts of free and bound MeV NTAIL

protein and free p53 were calculated. The predicted data
could be quantitatively compared with the experimental
chemical shift.

The experimental and predicted secondary Ca chemical
shift data of free and bound MeV NTAIL are shown in
Figure 11. This figure suggests that the predicted chemi-
cal shift data from ff99IDPs simulation are in quantitative
agreement with the experimental data with correlation
coefficient (R2) of 0.79 for the free state. However, the
prediction data from ff99SBildn simulation are signifi-
cantly different from experimental data with R2 of 0.35
for the free state. For the bound state, the correlation
between the simulation in ff99IDPs and experiment is
almost the same to that observed in the free state, with
R2 of 0.76, while the predicted chemical shifts in the
ff99SBildn simulation are also in good agreement with
experiment, with R2 of 0.61. This suggests that ff99IDPs

can be used in both disordered and ordered states for
IDPs while ff99SBildn only works well for the ordered
bound state.

We also calculated the secondary chemical shift for free
p53 and the results are shown in Figure 11. Interestingly,
the predictions derived from ff99IDPs show a similar
agreement with experiment (with a correlation coefficient
R2 of 0.63, Figure 11H) to that of ff99SBildn (R2 = 0.62,
Figure 11I). This is consistent with the structural analyses
above showing there are only ~4 residues are forming a
helical turn as shown in Figure 10.

Overall, more consistent agreement with the NMR experi-
ment can be observed when the simulations were con-
ducted in ff99IDPs.

Comparison with experimental residue dipolar
couplings
Residue dipolar couplings were further used to evaluate
the ff99IDPs force field. The flexible-meccano (FM)(68)
software was utilized to calculate the NHN couplings of
p53 from the helical propensities in both ff99IDPs and
ff99SBildn simulations. Calculated and experimental RDCs
(48) of free p53 are shown in Figure 12. RDCs values of
residues 20–25 in the ff99IDPs simulation are positive,
indicating that these residues tend to form a-helix, consis-
tent with the experimental RDCs values. The linear fit
between predicted RDCs from ff99IDPs simulation and
experimental data shows a higher correlation (R2 equal to
0.76) than from ff99SBildn (underestimated RDCs with R2

of 0.18). Combining with the simulated secondary struc-
ture populations described before, our validation suggests
that ff99IDPs may reproduce the structural properties of
IDPs both in free and in bound states.

Implicit water simulations of MeV NTAIL and p53
To test the compatibility of ff99IDPs in implicit solvent, we
used the PB model to study the structural characters of free
MeV NTAIL and p53 with both ff99IDPs and ff99SBildn. As
expected, similar results as in the explicit solvent model
were observed and are shown in Figure S9. Ca chemical
shift data of free MeV NTAIL protein under the ff99IDPs/PB
model have a higher correlation coefficient R2 (0.64) with
experimental data than that of the ff99SBildn/PB model
(0.36). Chemical shift data of free p53 were also predicted
close to experimental data for ff99IDPs with R2 of 0.76 and
0.71 for ff99SBildn. These results indicate that ff99IDPs can
also be used in the implicit water model for IDPs studies.

Conclusion

Intrinsically disordered proteins play important biological
function in cell signaling and cancer upon binding with
multiple interaction partners. These IDPs are found in
many diseases. However, widely used force fields could
not accurately simulate the property of IDPs. In this study,
we develop a specific force field to solve this problem. At
first, the distributions of φ/w dihedral for disordered resi-
dues are significant different from those of PDB structures.
Then, we report an effort on improving the φ/w dihedral
terms with CMAP energy term in ff99SBildn energy func-
tion. The results of CMAP optimization indicate that
ff99IDPs force field could reproduce the φ/w dihedral distri-
bution of 8 disordered residues, and these distributions
are similar to those of disordered benchmark data. Finally,
the test of two IDPs proteins confirms that ff99IDPs

improves the conformer distribution of IDPs. The helical

Figure 10: Structural representations of the top eight clusters of
p53 under ff99IDPs and ff99SBildn force fields.
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location and helical population of simulated free p53 are
agreement with those of the experimental observation.
Furthermore, the predicted secondary chemical shift data

for MeV NTAIL and p53 are in quantitative accord with
experimental data. Finally, ff99IDPs can also be used in
implicit water model for IDPs. In summary, ff99IDPs can

A CB
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Figure 11: Secondary Ca chemical shift comparisons between predicted data and experimental data. (A) Comparisons for free MeV
NTAIL protein. Red lines: experimental data; Green lines: predicted data under ff99IDPs force field; Blue dashes: predicted data under
ff99SBildn. (B) Correlations between predicted secondary chemical shift for free MeV NTAIL protein under ff99IDPs force field driving MD
simulations of free MeV NTAIL protein and the corresponding experimental data, with correlation coefficient (R2) of 0.79. (C) Correlations
between predicted secondary chemical shift for free MeV NTAIL protein under ff99SBildn force field and the corresponding experimental
data, R2 is 0.35. (D) Comparisons for bound MeV NTAIL protein. Red lines: experimental data; Green lines: predicted data under ff99IDPs
force field; Blue dashes: predicted data under ff99SBildn. (E) Correlations between predicted secondary chemical shift for ff99IDPs force
field driving MD simulations of bound MeV NTAIL protein and the corresponding experimental data, with correlation coefficient (R2) of 0.76.
(F) Correlations between predicted secondary chemical shift for bound MeV NTAIL protein under ff99SBildn force field and the
corresponding experimental data, R2 is 0.61 (L498 and M501 are outliers, colored in gray). (G) Comparisons for free p53. Red line:
experimental data; Green line: predicted data under ff99IDPs force field; Blue dashes: predicted data under ff99SBildn. (H) Correlations
between predicted secondary chemical shift data and experimental data under ff99IDPs force filed (R2 = 0.63). (I) Correlations between
predicted secondary chemical shift data and experimental data under ff99SBildn force filed (R2 = 0.62).
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reproduce the conformation of IDPs or IDRs both in bound
and in free states. More tests will be performed next.
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Figure S1. Histograms of the populations of the four prin-
cipal regions of φ/w dihedrals for different loop length limits
(labeled as different colors).

Figure S2. Simulation condition for CMAP and parameter
optimization.

Figure S3. φ/w distributions of disorder benchmark, PDB,
ff99SBildn, and CMAP minimizations of 5 iteration steps
for the 8 disorder-promoting residues.

Figure S4. Cumulative population for disorder benchmark,
PDB, ff99SBildn, and the final step of CMAP optimization
for 8 di-residues.

Figure S5. The cumulative average disorder population of
free MeV NTAIL within 10-ns window from ff99IDPs and
ff99SBildn simulations.

Figure S6. Secondary structures along simulation time for
free MeV NTAIL under ff99IDPs and ff99SBildn.

Figure S7. The cumulative average disorder population of
free p53 within 10-ns window from ff99IDPs and
ff99SBildn.

Figure S8. Secondary structures along simulation time for
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between implicit MD predicted data and experimental
data.
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