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h i g h l i g h t s
� T. eurythermalis A501 with Dunaliella biomass is an efficient H2 production mode.

� Lipid-extracted Dunaliella algal residue can greatly improve the H2 production.

� Algal concentration at 2.5 g/L and gas-liquid ratio at 2:1 reached optimal H2 yield.

� 192.35 mL/g VS H2 yield was obtained by T. eurythermalis A501 without pretreatment.
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Economic feasibility is important for the development of microalgae bioenergy industry.

Dark fermentation of microalgal residue in a biorefinery context can improve the energy

conversion efficiency of biomass and reduce the cost of microalgae industry. The present

study proposes a promising dark fermentation model that combines thermophilic

hydrogen-producing bacteria with algal residue substrates. Lipid-extracted Dunaliella res-

idue can greatly improve hydrogen production by Thermococcus eurythermalis A501, the

yields of which are more than four times higher than with algal cells as substrates. Under

the optimal conditions of 2.5 g/L algal residue concentration and a 2:1 initial volume ratio

of gas to liquid, the highest hydrogen yields of 192.35 and 183.02 mL/g volatile solid (VS)

with algal residue of Dunaliella primolecta and D. tertiolecta are obtained, respectively, in less

than 19 h without any pretreatment. This work may provide a biorefinery approach for

comprehensive utilization of microalgae resources.
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Introduction

Increasing climate change and environmental pollution have

prompted the search for clean energy [1]. Hydrogen has

attracted more attention than other alternative energy sour-

ces, because of its high energy output and sole by-product of

water [2]. However, most of the global hydrogen currently

comes from steam reforming of non-renewable hydrocarbon

in the petrochemical industry, which is not sustainable

because of its dependence on fossil fuels [3]. In contrast, bio-

hydrogen production from renewable source including bio-

photolysis, photo and dark fermentation has been

increasingly emphasized [4]. Especially, dark fermentation

can be served as a core bioprocess in the biorefinery concept,

combined with sustainable biomass technology to produce

hydrogen and other high-value byproducts, while utilizing

organic residues from the upper biological processes [5]. In

this context, dark fermentation, which combines hydrogen-

producing bacteria with biomass, is attractive for further

development.

Microalgae have recently been investigated as a source of

biofuel production including biodiesel, bioethanol and bio-

hydrogen [6]. Indeed, compare to terrestrial plants,microalgae

offer a broad prospect for the biofuel production due to their

high growth rate, lack of lignin and no need for arable land [7].

At present, the application of microalgae in biodiesel is

heavily studied in the field of microalgae bioenergy. Never-

theless, microalgal biodiesel still cannot compete with con-

ventional diesel because of the relatively high cost [8].

Comprehensive utilization of microalgal resources is a

feasible way to reduce the production cost of biodiesel.

Dunaliella is a unicellular species of microalgae that is prom-

ising for industrial applications in biodiesel production and

carotenoids extraction [9,10]. Dunaliella residue after lipid

extraction still contains high levels of sugar and protein,

which are good substrates for dark fermentation [11,12].

Moreover, due to its characteristic of lacking a cell wall [13], it

is easier to use Dunaliella as a substrate than other algae, due

to lower pretreatment cost [14]. Therefore, the efficiency of

microalgal biomass based production of energy can be

improved by using Dunaliella algal residue as a substrate for

dark fermentation, thus increasing the feasibility of micro-

algae bioenergy industrialization.

Various microorganisms function as biocatalysts in the

dark fermentation process. The growth temperature catego-

rizes these hydrogen-producing bacteria into ambient

(15e30 �C), mesophilic (30e39 �C), thermophilic (50e64 �C) and
hyper-thermophilic (>65 �C) [15]. When considering the effect

of temperature on dark fermentation reaction, higher tem-

peratures (�60 �C) are thermodynamically more suitable for

hydrogen production, which enables thermophiles to produce

more hydrogen than mesophiles. Moreover, thermophilic and

hyper-thermophilic hydrogen-producing bacteria usually

have higher substrate conversion efficiency and hydrogen

tolerance than mesophilic species [16]. Also, strictly thermo-

philic conditions can reduce the risk of contamination and

inhibit activities of hydrogen consumers [17]. Currently,

exploiting extreme environmental resources such as deep

seas and hot springs has attracted increasing attention. Due to
the advantages of thermophilic and hyper-thermophilic spe-

cies, it is necessary to study the dark fermentation using

hydrogen-producing microorganisms newly obtained from

extreme environments.

Thermococcus eurythermalis A501 is a hyper-thermophilic

archaeon with a wide range of growth conditions that was

recently isolated from an oil immersed chimney of a deep-sea

hydrothermal vent in the Guaymas Basin [18]. Based on a

genome sequence analysis, T. eurythermalis A501 encodes a

series of hydrogenase complexes and can thus be used to

study the hydrogen production capacity of dark fermentation

[19]. Therefore, in the present study, dark fermentation by a

hyper-thermophilic archaeon T. eurythermalis A501 using

Dunaliella biomass as a substrate was investigated. To

compare this method of hydrogen production with previous

studies, the kinetic parameters of dark fermentation were

analyzed and hydrogen yields without any pretreatment were

determined.
Materials and methods

Microalgal cultivation

The microalgae used were Dunaliella primolecta and D. tertio-

lecta acquired from the Freshwater Algae Culture Collection at

the Institute of Hydrobiology, China.

The microalgal species were cultivated in Dunaliella me-

dium containing (g/L) NaCl, 87.69; NaNO3, 0.42; CaCl2$2H2O,

0.044; NaHCO3, 0.84; NaH2PO4$2H2O, 0.0156; KCl, 0.074;

MgSO4$7H2O, 1.23; ferric citrate, 0.005 and 1 mL of microele-

ment reagent containing (g/L) MnCl2$4H2O, 1.81; CuSO4$5H2O,

0.079; ZnSO4$7H2O, 0.222; H3BO3, 2.86; NaMoO4$5H2O, 0.39;

Co(NO3)2$6H2O, 0.0494. In batch culture, D. primolecta and D.

tertiolecta were cultivated in a 1 L Erlenmeyer flask and

agitated by bubbling air, under 25 ± 2 �C and a light intensity of

4000 Lux (measured by a light meter).

Microalgaewere collected by centrifugation at 6500 rpm for

5 min and washed twice with distilled water. The pellets were

treated with a freeze dryer to obtain dried algal biomass and

for further lipid extraction.

Microalgal biomass composition analysis

The method of Zhu et al. [20] was used to extract the total

lipids from microalgae with some modifications. Algae pow-

der (0.2 g) was added into a 5 mL organic reagent mixture of

chloroform: methanol (2:1, v/v). After 20 min of shaking

extraction, the samples were centrifuged at 8000 rpm for

10 min. This process was repeated until all lipids in the algal

cells were extracted. Finally, all extracts were collected, steam

dried at 60 �C in a water bath and weighed using an analytical

balance.

The protein content was estimated by the Kjeldahl method

and the total nitrogen content was converted to crude protein

by a conversion factor of 6.25.

The carbohydrate content of microalgal biomass was

measured using the 3.5-dinitrosalicylic acid colorimetric

method (DNS method) [21]. The sample was pretreated as

follows: algae powder (0.2 g) was added into 10 mL of 6 M HCl
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and 15 mL distilled water, mixed and then boiled. Iodine so-

lution was used as a reaction indicator. When the mixture

boiled to the point where the iodine solution could not turn

blue (30 min), the total carbohydrate was considered to have

been hydrolyzed to monosaccharide.

Volatile solid (VS) content of microalgal biomass was

measured by placing dry algal powder in a muffle furnace at

600 �C for 4 h. The volatile solid content is the percentage of

the weight reduced after treatment to the total weight of dry

samples.

Microorganism fermentation

T. eurythermalis A501 was used for fermentation experiments.

The pre-inoculum was cultured in Thermococcales Rich Me-

dium (TRM) [22], which contains (per liter of distilled water)

yeast extract, 1 g; tryptone, 4 g; NaCl, 23 g; MgCl$6H2O, 5 g;

(NH4)2SO4, 0.5 g; KCl, 0.7 g; PIPES, 3.3 g; NaBr, 0.05 g; SrCl2,

0.01 g; CaCl2$2H2O (2%), 1 mL; NaWO4 (10 mM), 1 mL; FeCl3-
$6H2O (25 mM), 1 mL; KH2PO4 (6%), 1 mL; K2HPO4 (6%), 1 mL.

Dark fermentation

Batch experiments were conducted in 150 mL fermentation

bottles that were sealed with butyl rubber stoppers and

aluminum seals. In order to eliminate oxygen, nitrogen was

filled as the gas phase. The pressure in the fermentation bottle

was indicated by the barometer on the air pumping device.

After replacing the air in the bottle with nitrogen, the pressure

in the fermentation bottle was further adjusted to normal

pressure with a syringe. All tests were performed at 85 �C for

18 h and included inoculations with late exponential-phase T.

eurythermalis A501 (106 cells/mL). For these assays, the

fermentation medium used was basal TRM (without yeast

extract or tryptone) with microalgal biomass as a unique

carbon source.

To analyze the potential of Dunaliella biomass, dry and wet

and lipid-extracted microalgal biomass were used as sub-

strates in fermentation experiments under three conditions.

The different biomass concentrations and conditions used are

shown in Table 1. The dry weight (g/L) of wet algal cells was

calculated using the method proposed by Chiu et al. [23].
Table 1 e Different added concentrations of dry and wet and li
same initial biomass concentration, same initial carbohydrate

Algal biomass S

For same initia
biomass concentr

Dunaliella primolecta Dry algal cells 5

Wet algal cellsa 5

Lipid-extracted algal residue 5

Dunaliella tertiolecta Dry algal cells 5

Wet algal cellsb 5

Lipid-extracted algal residue 5

a Dry weight of wet algal cells of D. primolecta was determined with the e
b Dry weight of wet algal cells of D. tertiolecta was determined with the e
c The initial carbohydrate concentrations of different algal biomass o

respectively.
d The initial protein concentrations of different algal biomass of D. primo
To optimize substrate concentration, the initial concen-

trations of lipid-extracted algal residues ranging from 0.625 to

10 g/L were investigated.

To analyze the effect of initial volume ratio of gas to liquid

on hydrogen production, specific volumes of liquid medium

were added to fermentation bottles to keep the ratios as 1:5,

1:2, 1:1, 2:1 and 5:1.

All the experiments and analysis were conducted in

duplicate, and the results are shown as mean ± SD.

Analytical procedure for hydrogen

A 50 mL gas-tight syringe was used to measure the total vol-

ume of biogas accumulated during dark fermentation [24].

Hydrogen was detected by a gas chromatograph (GC-14B,

SHIMADZU, Japan) equipped with a thermal conductivity de-

tector (TCD) and a 1 m column (TDX-02, SHIMADZU, Japan).

Argon was the carrier gas used in gas chromatography. The

detector temperature was 120 �C, and the injector and column

temperatures were both 100 �C.
The specific hydrogen yield (SHY; mL/g VS) was defined as

the ratio of final volume of hydrogen produced (mL) to the

original algal biomass weight (g VS). For the best operational

conditions, the SHY was monitored using a modified Gom-

pertz equation (Eq. (1)) [25]:

H¼ Hmexp

�
� exp

�
Rme
Hm

ðl � tÞþ 1

��
(1)

In this equation, H is the SHY (mL/g VS), l is the lag time of

hydrogen production (h), Hm is the maximum potential yield

of hydrogen (mL/g VS), Rm is the peak rate of hydrogen pro-

duction (mL/g VS/h), t is the cultivation time (h), and e is the

exp (1) ¼ 2.718.
Results and discussion

Microalgal biomass characterization

Carbohydrates and proteins are the main substrates used by

microorganisms in the dark fermentation process. Several
pid-extracted microalgal biomass under the conditions of
concentration and same initial protein concentration.

ubstrate concentration (in dry weight, g/L)

l
ation

For same initial
carbohydrate concentrationc

For same initial
protein concentrationd

5 5

5 5

3.96 4.2

5 5

5 5

2.75 4.85

quation: Dry weight (g/L) ¼ 0.4909� OD680þ0.0955 (R2 ¼ 0.9903).

quation: Dry weight (g/L) ¼ 0.3573� OD680þ0.1340 (R2 ¼ 0.9954).

f D. primolecta and D. tertiolecta remained at 1.05 g/L and 1.02 g/L,

lecta and D. tertiolecta remained at 1.67 g/L and 1.53 g/L, respectively.
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studies demonstrated that carbohydrates could be effectively

utilized by hydrogen-producing bacteria and further con-

verted to hydrogen through fermentation [11,12]. In addition,

protein is necessary to provide nitrogen for microorganism

growth [12]. To quickly identify the potential of Dunaliella

biomass as a fermentation substrate, the organic composition

of microalgal biomass was measured (Table 2).

The algal cells of D. primolecta and D. tertiolecta contain

relatively high contents of carbohydrate (more than 20%) and

protein (more than 30%), and thus have the potential to be

used as fermentation substrates (Table 2). The percentages of

carbohydrate of algal residues after lipid extraction from D.

primolecta and D. tertiolecta were increased to 26.47% and

37.10%, respectively (Table 2), which suggested that algal

residue may be more suitable as a fermentation substrate

than algal cells. A biorefining method that integrates sus-

tainable production of either oil-derived or sugar-derived

biofuels is an economically attractive way to reduce the cost

of producing third-generation biofuels from microalgal

biomass [26]. As shown in Table 2, Dunaliella was also shown

to be suitable for production of microalgal biodiesel with high

lipid content (26.39% and 32.85% for D. primolecta and D. ter-

tiolecta, respectively). Therefore, from the perspective of

hydrogen production potential or comprehensive utilization,

it may be more advantageous to make full use of lipid-

extracted algal residue.

Hydrogen production from different algal biomass

In order to further verify the application potential of lipid-

extracted Dunaliella algal residue in hydrogen production by

T. eurythermalis A501, fermentation assays by algal residues

were performed and compared with dry algal cells and

wet algal cells. The SHYs of wet algal cells of D. primolecta and

D. tertiolecta were 36.84 mL/g VS and 25.34 mL/g VS, respec-

tively, more than six times higher than that of dry algal cells

(Fig. 1a and d). This difference may be due to higher humidity

of wet algal cells. The fermentation substrate was sterilized

before the dark fermentation process and the increase of

humidity in wet algal cells may enhance the sterilization ef-

fect and accelerate the thermal degradation process, thus

resulting in higher SHY than dry algal cells [27,28]. This result

is consistent with a previous study by Batista et al. [29], who

observed that wet algal cells were more favored as a substrate

for Enterobacter aerogenes than dry algal cells.

More importantly, it is evident that lipid-extracted algal

residues performed very effectively as a substrate for

hydrogen fermentation. Under the same initial biomass
Table 2 e Characterization of algal cells and lipid-extracted alg
mean of two repeats (mean ± SD).

Parameter Dunaliella primolecta

Algal cell Lipid-extracted alga

VS (%, w/w) 78.56 ± 0.02 80.83 ± 0.12

Proteins (%, w/w) 33.41 ± 026 39.78 ± 0.68

Lipids (%, w/w) 26.39 ± 0.41 n.d.

Carbohydrates (%, w/w) 20.99 ± 0.56 26.47 ± 0.21

n.d.: not detected.
concentration (Fig. 1a and d), the SHYs of algal residues of D.

primolecta andD. tertiolectawere 155.74mL/g VS and 117.02mL/

g VS, which were 4.2 times and 4.6 times higher than that of

wet algal cells, respectively. This result confirmed our specu-

lation that algal residue may be more suitable for fermenta-

tion because of higher carbohydrate and protein contents

(Table 2). Nobre et al. [30] also reported that higher SHY was

obtained with lipid-extracted algal residue rather than algal

cells and attributed the reason to a higher effective ferment-

able compound concentration in residue due to the oil

extraction.

On the other hand, the C/N ratio of substrate is also an

important factor affecting the efficiency of hydrogen produc-

tion. Maintaining an appropriate C/N ratio can not only ensure

the growth of hydrogen-producing bacteria, but also prevent

the nitrogen inhibition effect caused by excessive nitrogen

sources (proteins) in substrates [31]. Sun et al. [32] reported

that protein-rich Chlorella pyrenoidosa and carbohydrate-rich

rice residue could be used as co-ferment substrates at

various mix ratios to optimize hydrogen production. Xia et al.

[33] reported that when the C/N ratio of the substrates mixed

with Arthrospira platensis and Laminaria digitata was 26.2, the

SHY of anaerobic sludge reached a maximum of 83.9 mL/g VS.

A wide range of C/N ratios has been reported, and differences

in reaction conditions and hydrogen-producing bacteria may

result in differences in optimal C/N ratio [31]. In this study,

when comparing the SHYs of algal biomass from two species

of Dunaliella under the same initial substrate concentration,

the SHY of D. primolecta was always higher, regardless of

whether the form was dry algal cells, wet algal cells or algal

residue (Fig. 1a and d). This indicated that a higher ratio of

protein to carbohydrate (lower C/N ratio) may be more

conducive to the fermentation process of T. eurythermalisA501.

Furthermore, we compared the SHYs of different algal

biomass under the same carbohydrate concentration (Fig. 1b

and e) and the same protein concentration (Fig. 1c and f). From

Fig. 1b and c, the SHYs of algal residues of D. primolecta were

159.30 mL/g VS and 162.31 mL/g VS, respectively. From Fig. 1e

and f, the SHYs of algal residues of D. tertiolecta were

171.03 mL/g VS and 144.30 mL/g VS, respectively. Even with

the same concentration of carbohydrate or protein in the

substrate, lipid-extracted algal residues still performed very

effectively as a substrate compared with wet or dry algal cells.

Lakaniemi et al. [34] reported that the SHY was 12.6 mL/g VS

when untreated anaerobic sludge was combined with micro-

algal cells of D. tertiolecta. Our results further demonstrated

the superiority of T. eurythermalis A501 using Dunaliella algal

residue to produce hydrogen.
al residues of D. primolecta and D. tertiolecta. The data is the

Dunaliella tertiolecta

l residue Algal cell Lipid-extracted algal residue

87.71 ± 0.28 84.77 ± 0.23

30.64 ± 0.05 31.57 ± 0.35

32.85 ± 0.18 n.d.

20.38 ± 0.37 37.10 ± 1.13

https://doi.org/10.1016/j.ijhydene.2020.03.010
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Fig. 1 e SHYs from different algal biomass of Dunaliella primolecta (a, b, c) and D. tertiolecta (d, e, f) by Thermococcus

eurythermalis A501. a, d: Different algal biomass under the same initial biomass concentration; b, e: different algal biomass

under the same initial carbohydrate concentration; c, f: different algal biomass under the same initial protein concentration.
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There were several reasons for the obvious increase of

hydrogen production when lipid-extracted algal residue was

used as a substrate. Considering all three conditions, the reason

may be related to a higher fragility of cellular structure. The

process of repeated extraction of oil components may increase

the specific surface area and intracellular accessibility of

microalgal cells [35], rendering intracellular carbohydrate and

protein more readily useable by hydrogen-producing bacteria.

Moreover, it was reported that fermentation of long-chain fatty

acids (which are included in lipid content) to shorter chain fatty

acids is thermodynamically non-spontaneous unless meth-

anogenesis is involved [36]. Therefore, the presence of a large
amount of oil in dry andwet algal cells is not efficiently utilized

by hydrogen-producing bacteria, resulting in lower SHYs of dry

and wet algal cells compared to algal residues.

In a biorefinery context, using algal residue to produce

hydrogen can promote the comprehensive utilization of

microalgal resources. Moreover, the results indicated that the

SHY was also significantly increased when algal residue was

used as a substrate. This can be advantageous, considering

that it is possible to reduce costs with an integrated bio-

refinery approach while achieving high SHY. Therefore, lipid-

extracted algal residue was used as a substrate for the

following optimization experiments.

https://doi.org/10.1016/j.ijhydene.2020.03.010
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Optimization of initial algal concentration for hydrogen
production

Many previous studies have shown that substrate concen-

tration is one of the core influencing factors of dark fermen-

tation [37,38]. In our study, the effects of algal residue

concentrations on hydrogen production are shown in Fig. 2.

When residue concentration of D. primolecta and D. tertio-

lecta increased from 0.625 g/L to 2.5 g/L, there were no signif-

icant changes in SHYs (Fig. 2). At a concentration of 2.5 g/L, the

SHYs of D. primolecta and D. tertiolecta algal residues achieved

209.04 mL/g VS and 178.65 mL/g VS, respectively. With the

residue concentration further increased to 10 g/L, the SHYs of

D. primolecta and D. tertiolecta algal residues gradually

decreased to 97.47 mL/g VS and 94.18 mL/g VS, respectively.

Lower yield obtained at higher substrate concentration was

also observed in previous studies. Batista et al. [39] reported

that when initial biomass concentration of S. obliquus

increased from 2.5 to 50 g/L, the production of hydrogen

decreased from 56.5 to 10.8 mL/g VS. This may be related to

product inhibition. In a fixed headspace reactor, the increasing

partial pressure of hydrogen is an important factor affecting

dark fermentation. At high partial pressure of hydrogen, the

reactions related to acetogenesis are thermodynamically non-

spontaneous [40], while volatile fatty acids (VFAs) will gradu-

ally accumulate as by-products as dark fermentation pro-

gresses [41]. The increased concentration of VFAswill enhance

the ionic strength in the medium and the inhibitory effect of

un-dissociated acids, thus reducing the metabolic activity of

the hydrogen producer. For example, Ginkel and Logan [42]

observed that hydrogen production was inhibited when the

concentration of self-produced undissociated acids accumu-

lated reached 19 mM. Moreover, the increase of hydrogen

pressure will also affect the enzymatic activity of microor-

ganisms, thus inhibiting the further production of hydrogen

[43]. Fiala and Stetter [44] reported that the accumulation of

hydrogen would strongly inhibit the growth activity of Pyro-

coccus furiosus, which belongs to the order Thermococcales. At

higher hydrogen pressure, P. furiosus will switch metabolic

pathways to reduce further hydrogen production [45].
Fig. 2 e Effects of algal residue concentrations on SHY of

Thermococcus eurythermalis A501.
On the other hand, keeping a relatively high organic

loading rate is also one of the reference indexes when

selecting the optimal initial substrate concentration. In in-

dustrial production, maintaining a high organic loading rate

can reduce the cost of equipment operation in the fermenta-

tion process while increasing the total SHY [31]. The SHYs

were basically at the same high level when the initial sub-

strate concentration ranged from 0.625 g/L to 2.5 g/L (Fig. 2).

Increasing concentration will lead to increased organic

loading rate, which is more advantageous. Therefore, the

initial algal residue concentration of 2.5 g/L was selected for

further research.

Optimization of initial gas-liquid volume ratio for hydrogen
production

Since the volume ratio of gas to liquid in the fermentation

system can directly affect the partial pressure of hydrogen, it

is also a parameter that needs to be optimized in fermentation

reaction [46]. Therefore, the effect of the initial volume ratio of

gas to liquid on the fermentation performance was investi-

gated (Fig. 3).

When the initial volume ratio of gas to liquid increased

from 1:5 to 2:1, there was a continual increase in the SHYs

(Fig. 3). At the initial ratio of 2:1, the SHYs of D. primolecta and

D. tertiolecta algal residues both increased by 1.7-fold, as

compared to the SHYs at the initial ratio of 1:5. Higher SHY

achieved at higher ratio of gas to liquid may be related to the

larger headspace volume of reactor, which lowers the partial

pressure of hydrogen [47,48]. Bastidas-Oyanedel et al. [43] re-

ported that in a mixed culture, the gas composition in the

reactor headspace can affect hydrogen related metabolic

pathways. The enzymatic activity related to hydrogen syn-

thesis such as NADH hydrogenase was thermodynamically

controlled by the partial pressure of hydrogen. Similarly,

when the concentration of hydrogen increases, the reduction

of oxidized ferredoxin is favored by the ferredoxin hydroge-

nase, thus shifting the metabolism to the direction of

hydrogen reduction [49].
Fig. 3 e SHYs of Thermococcus eurythermalis A501 under

different initial volume ratios of gas to liquid.

https://doi.org/10.1016/j.ijhydene.2020.03.010
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Fig. 4 e Biohydrogen production kinetics of lipid-extracted

algal residues of Dunaliella primolecta (a) and D. tertiolecta

(b) by Thermococcus eurythermalis A501. Kinetic analysis

conditions were as follows: microalgal residue

concentration 2.5 g/L, initial volume ratio of gas to liquid

2:1.

Table 3 e Fitting parameters of dark fermentation from
Thermococcus eurythermalis A501 combined with
Dunaliella algal residue substrates. Kinetic analysis
conditions were as follows: microalgal residue
concentration 2.5 g/L, initial volume ratio of gas to liquid
2:1.

Parameter Dunaliella primolecta Dunaliella tertiolecta

Hm (mL/g VS) 201.423 ± 4.720 184.038 ± 1.887

Rm (mL/g VS/h) 24.040 ± 2.071 25.864 ± 1.216

l (h) 6.569 ± 0.362 5.652 ± 0.175

t95 (h) 18.807 16.045

R2 0.996 0.999
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However, as the initial ratio of gas to liquid further

increased to 5:1, the SHYs ofD. primolecta andD. tertiolecta algal

residues significantly decreased to 109.74 mL/g VS and

97.41 mL/g VS, respectively (Fig. 3). When the reactor volume

is fixed, the further increase of gas-liquid ratio will lead to the

decrease of the volume occupied by the fermentation broth,

which is not conducive to the growth of hydrogen-producing

bacteria.

Overall, the highest SHYs were achieved when the initial

volume ratio of gas to liquid was 2:1 (Fig. 3). Therefore, it was

decided to maintain the gas-liquid ratio of 2:1 in subsequent

experiments.

Biohydrogen production kinetics

In order to further analyze the parameters in the process of

dark fermentation and verify the hydrogen production po-

tential of T. eurythermalis A501, kinetic analysis was carried

out using a modified Gompertz equation (Eq. (1)). The condi-

tions set in the simulation were the optimal conditions, that

is, the algal residue concentration was 2.5 g/L and the initial

volume ratio of gas to liquid was 2:1. The hydrogen generation

kinetic fitting results of D. primolecta and D. tertiolecta are

shown in Fig. 4.

With the extension of fermentation time, the dynamic

curve first went through a lag phase, and then hydrogen

production increased rapidly until the hydrogen accumula-

tion finally reached a stable phase (Fig. 4). The equation fits the

experimental data well, since the R2 is higher than 0.99 (Table

3). The estimated kinetic parameters Hm, Rm and l are in Table

3. The maximum SHYs with D. primolecta and D. tertiolecta as

substrates for T. eurythermalis A501 were 201.423 mL/g VS and

184.038 mL/g VS, respectively. These values are quite high

when compared with previous studies. Yang et al. [50] ob-

tained a maximum SHY of 45.5 mL/g VS using lipid-extracted

S. obliquusmicroalgal residues as a substrate for fermentation

by an anaerobic digested sludge. Nobre et al. [30] also reported

a SHY of 97.7 mL/g VS using oils and pigments extracted

Nannochloropsis sp. microalgal biomass as feedstock through

dark fermentation by Enterobacter aerogenes.

Short lag periods were also observed during fermentation

(6.569 h and 5.652 h when using D. primolecta and D. tertiolecta

as substrates, respectively), indicating that T. eurythermalis

A501 has strong adaptability to the operating fermentation

conditions. To further estimate the time required to complete

the fermentation process, the kinetic parameter t95, which

represents the time required to complete 95% of the hydrogen

production reaction [25], was also estimated by equation (2):

t95 e l¼ Hm

Rme
ð1� lnð�ln0:95ÞÞ (2)

The values of t95 of D. primolecta and D. tertiolecta were

18.807 h and 16.045 h, respectively (Table 3). This is relatively

short when compared with previous studies, including one

where more than 70 h fermentation time was needed by

Clostridium acetobutylicum using A. platensis as feedstock [51].

This is a beneficial result considering that short lag period and

fermentation time can reduce energy expenditure and in-

crease hydrogen production efficiency.
High SHY and short lag phase obtained by T. eurythermalis

A501 using Dunaliella algal residue as a substrate can be

related to the advantages of thermophiles. This is consistent

with a previous study by Kumar et al. [52], who showed that

the lag phase is greatly shortened under thermophilic

https://doi.org/10.1016/j.ijhydene.2020.03.010
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conditions, and therefore more suitable for hydrogen pro-

duction than under mesophilic conditions. In addition,

Dunaliella algal biomass, which lacks a cell wall, may also

promote substrate utilization by T. eurythermalis A501, thus

increasing the SHY.

Effects of autoclave pretreatment on hydrogen production

It is necessary to sterilize the culture medium before a

fermentation reaction when the hydrogen-producing micro-

organism is in pure culture. In this study, Dunaliella biomass

did not undergo any pretreatment, except the autoclaved

process necessary for fermentation medium (with addition of

microalgal biomass). This study used a new hyper-

thermophilic archaeon, T. eurythermalis A501 as hydrogen-

producing catalyst, which may have the advantage of pre-

venting contamination due to the high temperature (85 �C)
maintained by its fermentation process. In this case, the effect

of autoclave pretreatment was investigated (Fig. 5).

The SHYs of D. primolecta and D. tertiolecta without auto-

clave sterilization were 192.35 mL/g VS and 183.02 mL/g VS,

respectively (Fig. 5). The SHYs were only slightly lower than

that with sterilization, indicating that the high SHY was

almost unaffected by autoclave treatment. This can be

explained by the high temperature maintained during

fermentation. In addition to preventing contamination, the

purpose of autoclaving Dunaliella biomass is to destroy cell

structure and hydrolyze the released polysaccharides into

monosaccharides [53,54]. Dunaliella have no cell walls, mean-

ing they do not require drastic pretreatment. Moreover, the oil

extraction process also destroyed the structure of Dunaliella

cells, leading to easier release of intracellular compounds.

During dark fermentation, maintaining a high temperature

can also promote the utilization of algal residue by T. eur-

ythermalis A501. The results suggested that the temperature of

the fermentation process may be high enough that the algal

residue is fully utilized by T. eurythermalis A501, and thus high

SHYs were obtained.

Dark fermentation can be inoculated with either single or

mixed culture. Compared with single culture, mixed culture

such as anaerobic sludge is easier to use because of its simple
Fig. 5 e Effect of autoclave sterilization on SHY of

Thermococcus eurythermalis A501.
operation and because sterilization is not required [55]. Ster-

ilization on an industrial scale is economically inefficient.

However, special treatments are still needed for the initial

inoculum of mixed culture, so as to select hydrogen-

producing microorganisms and inhibit the activity of other

competitors or hydrogen consumers. This was confirmed by

the work of Cai and Wang, who observed that the hydrogen

production effect of pre-treated intertidal sludge was signifi-

cantly better than that of untreated sludge [56].

At present, the most common treatment method is heat

shock [57], but during the treatment process, the diversity of

hydrogen-producing bacteria will decline (lack of mesophilic

hydrogen-producing bacteria that do not form spores), and

the activity of hydrogen consumers cannot be completely

inhibited, which will eventually decrease hydrogen produc-

tion [58,59]. In this study, high SHY was still obtained without

sterilization when T. eurythermalis A501 used Dunaliella algal

residues as a substrate. This is favorable, considering that the

hydrogen production mode of T. eurythermalis A501 combined

with lipid-extracted Dunaliella algal residues can achieve high

SHY while reducing sterilization costs. Moreover, the SHY

obtained with this method lacking any pretreatment was

quite high, considering that the range of hydrogen production

by fermentation of microalgal biomass without any pretreat-

ment in previous studies is 0.37e97.7 mL/g VS [60].

It should be noted that the high temperature required by T.

eurythermalis A501 in the fermentation process still requires a

high energy input, which may also increase the cost of dark

fermentation. For possible future industrial use, additional

heat demand required in thermophilic fermentation may be

achieved at a large-scale via the use of waste heat with effi-

cient heat exchange and recovery units. Ljunggren and Zacchi

[61] reported that the use of heat recovery devices can reduce

heat demand by 88%, thus greatly reducing the cost of ther-

mophilic fermentation. On the other hand, they also found

that the addition of yeast extract as a nutrient to the

fermentationmedium significantly increased the total cost. In

our study, T. eurythermalis A501 produced hydrogen in the

basal TRM medium (without yeast extract or tryptone) with

Dunaliella algal residue as the sole substrate. Moreover, high

value chemicals such as VFAs were also produced when

hydrogen is produced by dark fermentation. The fermentation

effluent can be used as a feedstock for further biogas pro-

duction (combined with anaerobic digestion or photo

fermentation) or biomass production (microalgal culture) in a

biorefinery way, thus further enhancing comprehensive uti-

lization and feasibility of this model [62e64].
Conclusions

In this work, lipid-extracted Dunaliella residue was found to be

a potential fermentation substrate utilized by T. eurythermalis

A501 that can promote comprehensive utilization of micro-

algal resources in an integrated biorefinery approach. Sub-

strate concentration and initial volume ratio of gas to liquid

were both key factors in the fermentation process. The high-

est hydrogen yield of 192.35 mL/g VS with D. primolecta algal

residues was obtained under optimal conditions without any

pretreatment. The results indicated the superiority of T.
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eurythermalis A501 in fermentation with lipid-extracted

Dunaliella biomass, which can be used to provide insights

into the development and utilization of deep-sea thermo-

philes resources for dark fermentation research.
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