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Abstract

Background:The long reads of the third-generation sequencing significantly benefit the quality of the de novo genome assembly.
However, its relatively high single-base error rate has been criticized. Currently, sequencing accuracy and throughput continue
to improve, and many advanced tools are constantly emerging. PacBio HiFi sequencing and Oxford Nanopore Technologies (ONT)
PromethION are two up-to-date platforms with low error rates and ultralong high-throughput reads. Therefore, it is urgently needed
to select the appropriate sequencing platforms, depths and genome assembly tools for high-quality genomes in the era of explosive
data production.
Methods: We performed 455 (7 assemblers with 4 polishing pipelines or without polishing on 13 subsets with different depths) and 88 (4
assemblers with or without polishing on 11 subsets with different depths) de novo assemblies of Yeast S288C on high-coverage ONT and
HiFi datasets, respectively. The assembly quality was evaluated by Quality Assessment Tool (QUAST), Benchmarking Universal Single-
Copy Orthologs (BUSCO) and the newly proposed Comprehensive_score (C_score). In addition, we applied four preferable pipelines to
assemble the genome of nonreference yeast strains.
Results: The assembler plays an essential role in genome construction, especially for low-depth datasets. For ONT datasets,
Flye is superior to other tools through C_score evaluation. Polishing by Pilon and Medaka improve accuracy and continuity of
the preassemblies, respectively, and their combination pipeline worked well in most quality metrics. For HiFi datasets, Flye and
NextDenovo performed better than other tools, and polishing is also necessary. Enough data depth is required for high-quality genome
construction by ONT (>80X) and HiFi (>20X) datasets.
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Introduction
The high-throughput and long-reads of next-generation
sequencing technologies enabled the sequencing of
entire genomes at an unprecedented speed, which
has revolutionized biology in the past decades not
only for laboratory research but for people’s daily
life [1]. The third-generation sequencing (TGS), Pacific
Biosciences (PacBio) and Oxford Nanopore Technologies
(ONT) are real-time, long-reads generated, single-
molecule sequencing platforms, which can overcome
the shortcomings of second-generation sequencing (SGS)
technology such as relatively short reads, sequence-
dependent biases, information loss [1], that greatly
improved the continuity of de novo genome assembly [2].

Lately, high-throughput high-fidelity (HiFi) reads,
obtained by PacBio sequel II system with the circular
consensus sequencing mode, owned long reads (>10 kb)
and high per-base accuracy (>99.9%). Unlike SGS and
PacBio’s optical monitoring systems that rely on DNA
polymerase to read base sequences, ONT sequencing
identifies DNA bases by measuring the changes in electri-
cal conductivity generated as DNA strands pass through
a biological pore that makes it generate ultralong reads.
The most cutting-edge representation is PromethION
platform that can produce 7 Tb reads per run with an
average sequencing speed of ∼430 bases/s and N50 >

20 kb [3], which makes it possible to achieve data quickly
and overcome the confusion of repetitive regions to
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construct a continuous high-quality genome sequence,
especially in the assembly of complex genomes such as
high heterozygosity, high repetition and large genomes.

Although long reads do beneficial to genome con-
struction, the single base error rate of ONT and HiFi
sequencing is still higher than SGS. There are mainly two
strategies for reducing errors in ONT genome assemblies;
the first is to correct the random errors of long reads
before genome assembly through high coverage, and the
second is to polish the draft sequence after assembly
which we called ‘polishing’ step.

Recently, a variety of new genome assembly and pol-
ishing methods have emerged. Canu is a successor of
Celera assembler and introduces the adaptive overlap-
ping strategy based on tf-idf weighted MinHash and the
sparse assembly graph construction that avoids collaps-
ing diverged repeats and haplotypes [4]. It was lately
modified for HiFi reads and named HiCanu [5], which has
homopolymer compression, overlap-based error correc-
tion and aggressive false overlap filtering steps. NECAT
is an error correction and de novo assembly tool for ONT
long noisy reads [6]. Similar to Canu, it first corrects the
raw reads and then establishes the assembly, but Necat
uses an adaptive read selection and two-step progressive
method to quickly correct ONT reads to high accuracy.
NextDenovo [7] is a string graph-based de novo assembler
for multitype long reads such as Continuous Long-Read
(CLR), HiFi and ONT. It uses the ‘correct-then-assemble’
strategy for ONT reads but no correction step for HiFi
reads. Flye [8] is also compatible with ONT and HiFi
reads and first generates the error-prone disjointings,
then concatenates all disjointings into a single string in
an arbitrary order and constructs the assembly graph
and finally resolves the graph to obtain the accurate
contigs. Hifiasm [9] is a recently published assembler
that takes advantage of HiFi reads to faithfully resolve
the haplotype information in a phased assembly graph.
Miniasm constructs the string graph by overlapping a
set of reads. It only performs the layout step of the
overlap–layout-–consensus algorithm, which is different
from Canu or Necat. Unlike the above long-read assem-
blers, Unicycler [10] can use short-read-only, long-read-
only or hybrid reads for assembly. In the hybrid assembly
process, it builds an initial assembly graph from short
reads using SPAdes and then simplifies the graph using
information from short and long reads. Pilon [11] and
Racon are polishers that use short reads and long reads
for correction, respectively. Racon is recommended to
correct Miniasm’s draft assembly [12], so we also design
the ONT reads assembly pipeline named MiniRacon that
combines the Miniasm and third round Racon iteration.
Medaka is the first neural network-based polishing tool
developed by ONT. NeuralPolish [13] is the latest polisher
based on alignment matrix construction and orthogonal
Bi-directional Gated Recurrent Unit (Bi-GRU) networks.

Previous work on the comparison of genome assembly
tools of ONT reads mostly used prokaryotes, such as
Escherichia coli [14], virus [15] and pathogenic bacteria

[16, 17], and mostly used simulated datasets to construct
low-quality sequences. Giordano et al. [18] used yeast as
sequencing material for de novo assembly comparison
in 2017, but the sequencing depth of the ONT datasets
was very low, only ∼30X and the tools used were out-
dated, which could not guide the choice of advanced tools
for the genome construction. Recently, the comparison
of assembly on HiFi reads was carried out for E. coli,
Drosophila ananassae [19] and rice [20]. However, HiFi has
not been conducted and evaluated in yeast, not to men-
tion the comparison of all available assemblers. There-
fore, to select the advanced genome-build pipeline and
appropriate sequencing depth for eukaryotes remains
urgently to be investigated.

In this study, we comprehensively evaluated the
influence of sequencing methods, assembly tools, pol-
ishing tools and sequencing depth on eukaryotic genome
construction with high-coverage ONT, HiFi and BGISEQ
paired-end datasets, using model organism yeast as the
representative. This is not only the first time across the
wide coverage as 800X on the ONT dataset but also the
first HiFi dataset release of yeast. For the ONT dataset,
the combination of 7 assembly methods (Canu, Flye,
Necat, Miniasm, MiniRacon, NextDenovo and Unicycler)
and 4 polishing methods (Medaka, Pilon, NeuralPolish
and Medaka_Pilon) was carried out on 13 different
depth subsets. While for the HiFi dataset, 4 latest tools,
hifiasm, NextDenovo, Flye, and HiCanu, were applied on
11 different depth subsets with or without Pilon polish.
The genome quality and computing performance of each
pipeline was evaluated to determine the appropriate
workflow and sequencing depth. In addition, we also
sequenced and assembled two different genera of
yeast strains, Saccharomyces cerevisiae CICC-1445 (SC)
and Schizosaccharomyces pombe FLO-DUT (SP), to retrieve
the high-quality genome by using the outstanding
workflows. The advanced benchmark tests of updated
tools based on high-coverage ONT and HiFi datasets
provide valuable guidance for TGS genome construction
of mold, microalgae and even complex genomes, such as
human, to be exceptionally useful in understanding the
fundamental mechanism of eukaryotic.

Materials and methods
Yeast strain and growth conditions
Saccharomyces cerevisiae strain S288C (ATCC 204508) and
S. cerevisiae CICC-1445 were purchased from the Amer-
ican Type Culture Collection (ATCC) and China Center
of Industrial Culture Collection (CICC), respectively; S.
pombe FLO-DUT was preserved by our laboratory. The
yeast strain was precultured on Yeast extract Peptone
Dextrose medium (YPD) plates (10 g/l yeast extract, 20
g/l peptone, 20 g/l glucose and 20 g/l agar) at 30 ◦C for 24
h. A single colony was activated and then cultured in YPD
media at 30 ◦C and 150 rpm and sampled when cells were
growing in the log phase with Optical Density (OD)600=
0.8 ∼ 0.9.
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Genome sequencing and subsets generation
from raw full datasets
Genomic DNA of three strains was extracted, tested and
sequenced to generate ONT (PromethION) and BGISEQ
reads and HiFi reads at BGI (Shenzhen, China) and Per-
sonalbio (Shanghai, China), respectively. Saccharomyces
cerevisiae CICC-1445 and S. pombe FLO-DUT have not
been sequenced before. Here, we generated the first
complete genome sequences of these two strains. All
raw data and three assembled genomes through optimal
pipelines have been uploaded in the National Center
for Biotechnology Information (NCBI) with BioProject
accession PRJNA792930, PRJNA792931 and PRJNA792932
for S. cerevisiae S288C, S. cerevisiae CICC-1445 and S. pombe
FLO-DUT, respectively.

Detailed statistic information about each sequenced
dataset is summarized in Supplementary Tables S1–S3
(see Supplementary Data available online at https://
academic.oup.com/bib). S288C has the deepest sequenc-
ing depth, about 800X ONT reads with N50 of ∼27 kb,
380X HiFi reads with N50 of ∼21 kb and average passes
with 10.29 times and 240X depth of 2 × 150 bp BGISEQ
paired reads. The raw ONT and HiFi reads of S288C were
mapped to the latest gold-standard reference S288C
genome (GCA_000146045.2) by pbmm2 (v1.3.0) [21] to
calculate the mean-mapped concordance. Although
sequencing depths are different for three strains, their
ONT (Supplementary Figure S1A and B, see Supplemen-
tary Data available online at https://academic.oup.
com/bib) and HiFi (Supplementary Figure S1C and D,
see Supplementary Data available online at https://
academic.oup.com/bib) datasets have similar read
length distribution. To explore the dependence of the
assembly pipelines on sequencing depth and the effect
of that on the assembly quality, we randomly sampled
13 subsets with gradient depths of 10X, 20X, 40X, 60X,
80X, 100X, 120X, 140X, 160X, 320X, 480X, 640X and 800X
for S288C ONT data, 11 subsets with gradient depths of
10X, 20X, 40X, 60X, 80X, 100X, 120X, 140X, 160X, 320X
and 380X for S288C HiFi data and 6 subsets with depths
of 10X, 20X, 40X, 80X, 160X and 240X for BGISEQ data by
Seqtk v1.2. Each ONT or HiFi subset has a similar read
length distribution (Supplementary Figure S1E and G,
see Supplementary Data available online at https://
academic.oup.com/bib) and coincident read length
density (Supplementary Figure S1F and H, see Supple-
mentary Data available online at https://academic.oup.
com/bib).

De novo assembly and polishing pipelines
De novo assembly and polishing pipelines for our
benchmark tests are shown in Figure 1. For 11 HiFi
subsets of S288C, we performed 4 assemblers, HiCanu
(v2.2), Flye (v2.8.3), NextDenovo (v2.5.0) and hifiasm
(v0.16.1) by default settings. For 13 ONT subsets of S288C,
we used 7 different tools for long-read assembly: Canu
(v1.9), Flye (v2.8.3), Necat (v20200119), Miniasm (v0.3),
Miniasm (v0.3)/Racon (v1.4.13), NextDenovo (v2.5.0)
and hybrid-read assembler Unicycler (v0.4.8). Default

parameters were used except Flye at super-high read
depth, ‘–asm-coverage = 50’ was set. The normal mode
was used for the hybrid assembly by Unicycler. Then,
each assembly was further polished by NeuralPolish,
Medaka (v1.0.1) or Pilon (v1.23), respectively, with default
parameters. Only ONT reads were used in NeuralPolish
and Medaka, while only BGISEQ reads were input
in Pilon. The model of ‘r941_prom_high_g303’ was
used in Medaka. We also combined Medaka and Pilon
pipelines (Medaka_Pilon) to obtain high-quality genome
assembly. When lower than 160X, the depth of short
reads was consistent with that of long reads during the
assembly process. In other cases, all short reads (240X)
were used.

Genome assembly assessment
We used QUAST (v5.0.2) to evaluate the quality of the
assemblies generated by different assemblers and pol-
ishing tools [22]. All draft assemblies were compared to
the latest reference S288C genome. From several metrics,
we selected the number of contigs, N50, Mismatches
and Indels per 100 kb to visualize in the main text. We
also used BUSCO [23] to assess the genome annotation
completeness of assemblies. In order to clarify the rate
of different error types of NeuralPolish, we used Pomoxis
v0.3.9 to report the insertion and deletion error rates
separately. Furthermore, we proposed a new Compre-
hensive_score (C_score) to compositively evaluate the
quality of genome assemblies from different pipelines in
order to give some advice for needed users, which were
described in detail in section 3.2. And we also attach the
raw evaluating values from QUAST in the supplemental
file for advanced users’ information.

We designed the improvement rate (IR) for each metric
to evaluate the polishing pipeline through the Equation
(1), where i means the order of the data depth and n
means the number of subsets which is 13 for ONT data.
The coefficient is +1 or −1 for metrics means that the
higher the better (N50) or the smaller the better (Indels,
Mismatches, contigs), respectively

IR = (±1) × 1
n

n∑
i=1

Mi_After − Mi_Before

Mi_Before
. (1)

Annotation of the assembled genome
De novo genome structure annotation was carried out
by Augustus (v3.3.3) [24]. Then, annotated protein
sequences were aligned to the S288C reference database
by BLASP with a value = 1e−5 and max_target_seqs =
1. We calculated the percentage of annotated genes
by Equation (2). The total gene number in reference
was 6002. Venn diagram was drawn by VENNY (v2.1)
[25] to compare the gene annotation ability of optimal
pipelines.

Percentage of annotated genes

= Annotated gene numbers in assembly
Total gene number in reference

. (2)
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Figure 1. De novo assembly and polishing pipelines for benchmarking. The datasets used in each pipeline were represented by colors: Blue, HiFi; Red,
ONT; Green, short reads from BGISEQ.

The sets of programs for assembly, polishing, eval-
uation and annotation were provided in supplemental
file.

Results and discussion
De novo assemblers showed significant
differences in assembly quality on ONT datasets
We used the reference strain of S. cerevisiae, S288C, to
compare the capabilities of seven advanced assembly
pipelines, Canu, Flye, Necat, Miniasm, MiniRacon,
NextDenovo and Unicycler. These assembly pipelines
showed significant differences in assembly quality.
Genome accuracy especially the Indels per 100 kb was
highly variable (Figure 2A). Unicycler has the most
outstanding performance on Indels per 100 kb, with only
a few errors, followed by MiniRacon, Necat and Flye. In
addition to Miniasm, Canu has the most Indels. Most of
the assemblers have relatively low Mismatches, while
Flye and Necat presented the lowest mismatch number
and have low variabilities in different read depths
(Figure 2B). As for continuity, Necat and NextDenovo pro-
duced draft assemblies that had contig numbers closest
to the chromosome numbers of the reference genome (16
chromosomes and 2 plasmids) and Flye has the robust
N50 (Figure 2C and D). According to the result of BUSCO
(Figure 2E and Supplementary Figure S2, see Supplemen-

tary Data available online at https://academic.oup.com/
bib), Unicycler has the most complete gene number,
followed by MiniRacon, Flye and Necat.

Canu has the least robust contig numbers, with
fewer contigs when data depth was below 480X and
dramatically increased when data depth was above
480X (Figure 2). Unicycler performed weakest in terms
of contiguity but superior in terms of accuracy. Miniasm
assembly presents the worst on both accuracy and
completeness since it doesn’t include the base error
correction and consensus steps. By BUSCO evaluation,
it only has 2–11 complete genes, with a proportion of
0.1–0.5% (Supplementary Figure S2, see Supplementary
Data available online at https://academic.oup.com/bib),
which indicates the loss of correction and consensus
during assembly has a great influence on the subsequent
sequence characteristic analysis.

As the data depth of the subset increases from 10X to
800X, the computing resources required by all assem-
blers increase (Figure 2F). Miniasm and NextDenovo
consumed the least CPU time, followed by MiniRa-
con and Necat. Unicycler consumed most computa-
tional resources and took 1536 CPU hours with 800X
subsets, followed by Canu, while NextDenovo is a
storage-consumed assembler and spends most memory
(Supplementary Figure S3, see Supplementary Data
available online at https://academic.oup.com/bib).
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Figure 2. Main metrics of assemblies on 13 ONT subsets with different data depths. Number of Indels (A) and Mismatches (B) per 100 kb, contig numbers
(C), length of N50 (D), complete genes’ number from BUSCO (E) and computational time of different assemblers (F).

C_score evaluation of assemblers
Here, we integrate 5 metrics to comprehensively evaluate
the genome qualities of assemblies from different assem-
blers, including contig numbers (contigs), the number of
mismatches (Mismatches), Indels per 100 kb (Indels), N50

length in kb and the number of complete genes evaluated
by BUSCO (completeness). For each metric, the value was
scaled to [0, 1] by Min-Max Normalization across dif-
ferent pipelines and named Scaled_Metric (SM) through
Equation (3), where M is the mean of all available subset
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Table 1. The mean of metric values (M) and comprehensive scores (C_score) of different assemblers on ONT dataset.

Contigs N50 (kb) Mismatches Indels Completeness C_score

Flye 25.0 942.4 16.3 93.1 1506.7 0.904
Necat 17.2 825.4 33.3 91.8 1419.2 0.824
NextDenovo 17.2 798.2 22.3 101.8 1446.2 0.795
MiniRacon 26.5 788.1 19.7 70.9 1512.5 0.713
Canu 35.8 834.9 18.4 114.4 1458.1 0.678
Unicycler 40.3 836.6 17.6 4.4 1697.6 0.677
Miniasm 26.9 770.8 2265.1 3150.6 5.9 0.116

∗Each M was calculated by the average of 13 ONT subset metrics (Mi) from 10X to 800X.

metrics (Mi). The Mmin or Mmax means the minimum or
maximum M of pipelines that are to be compared.

SM = M − Mmin

Mmax − Mmin
. (3)

For high-quality assembly, the metrics N50 and the
number of complete genes should be as high as possible,
and the metrics contigs, Mismatches, Indels should be as
low as possible. Therefore, we define a raw_C_score in
Equation (4) by summing up five SMs, whose coefficients
were set as 1 for the first two metrics or −1 for the latter
three metrics because of the positive and negative con-
tribution of metrics. Then, we rescale the raw_C_score
to [0, 1] also by Min-Max Normalization and obtained
the C_score Equation (5), where the raw_C_scoret_ min and
raw_C_scoret_ max mean the minimum and maximum
theoretical value of the raw_C_score, which is −3 and 2,
respectively

raw_C_score = SMN50 + SMCompleteness − SMContig

− SMMismatches − SMIndels (4)

C_score =
raw_C_score −

(
raw_C_scoretmin

)

raw_C_scoretmax − raw_C_scoretmin

. (5)

The metric mean of the 13 subsets is used to calculate
the C_score of 7 assemblers (Table 1). Flye has the best
comprehensive performance, closely followed by Necat.
Besides, Unicycler has excellent accuracy despite the
fragmented assemblies and long CPU hours.

Influence of polishing process on assembly
quality
For each obtained draft assembly of ONT subsets, we
obtained a polished assembly by using each run of
four polishing pipelines (NeuralPolish, Medaka, Pilon,
Medaka_Pilon) and then assessed its performance
through QUAST (Supplementary Figure S4, see Supple-
mentary Data available online at https://academic.oup.
com/bib) and calculated the main metrics IR of each
polishing process (Figure 3).

Medaka can reduce the contig number to a certain
degree and NeuralPolish can improve the N50 metric
since they use the long reads to improve the continuity.
Pilon has no obvious effect on the improvement of
continuity because it uses the short reads from SGS for

Figure 3. Metrics IR of assemblies after the polishing process.

fine polishing of bases. However, in terms of accuracy,
Pilon is the most robust polisher to reduce Mismatches
and Indels among three single polishers, closely followed
by Medaka. Medaka can reduce the Mismatches of draft
sequences, especially for Unicycler. After Unicycler’s
assembly and Medaka’s polishing, we obtained the
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Figure 4. Computational resources required for polishers. The value is the sum of 13 subsets with data depths.

least mismatched sequences (Supplementary Figure S4,
see Supplementary Data available online at https://
academic.oup.com/bib). NeuralPolish showed variable
performance on accuracy. On one hand, it can reduce
Mismatches and Indels of assemblies from Miniasm, on
the other hand, it really increases that of other assem-
blies, which is due to the introduction of insertion error
rather than deletion error (Supplementary Figure S5,
see Supplementary Data available online at https://
academic.oup.com/bib). It is suspected that in the
polishing process of NeuralPolish, in order to correct
the deletion error more greedily, some correct positions
were misjudged as the deletion sites [13], and then
NeuralPolish modified these positions to introduce new
insertion errors.

The comparison results of the three single polishers
demonstrated that Pilon and Medaka perform better,
in which Medaka is more effective for the increase of
continuity and the decrease of Mismatches, and Pilon is
very competitive in the improvement of sequence accu-
racy. Consequently, we combined the two polishers and
demonstrated Medaka_Pilon performed better in most of
the quality metrics (Figure 3).

In terms of the computational performance, we calcu-
lated the sum of CPU time and memory utilized for 13
subsets (Figure 4). Pilon took the least time and mem-
ory followed by Medaka. Both of them consumed fewer
computing resources compared with assemble process.
However, NeuralPolish took a very long time, especially

Figure 5. The C_scores heatmap of four polishing pipelines by seven
assemblers independently.

in the neural network prediction step independent of
the input data depth (Supplementary Figure S6, see Sup-
plementary Data available online at https://academic.
oup.com/bib), which is about 160 CPU hours for each
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Figure 6. Main metrics of assemblies on 11 HiFi subsets with different data depths. Number of Indels (A) and Mismatches (B) per 100 kb, contig numbers
(C), length of N50 (D), complete genes number from BUSCO (E) and computational time (F).

assembly, with more intensive resources than most of
their assemble process.

C_score evaluation of polishing pipelines after
ONT dataset assembly
We also calculated the C_score of all pipelines of ONT
datasets and displayed by the heatmap in Figure 5.
The results showed that the Medaka_Pilon polishing

performed well with most assemblers. Medaka has
similar performance and is clustered in the nearest
branch with Medaka_pilon, followed by another neural
network-based polisher NeuralPolish. Pilon also has a
good performance except with Miniasm. In terms of
assemblers, similar polishing features were observed
in the draft assemblies from Necat and NextDenovo.
Flye is a superior tool that achieves the highest C_scores
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Table 2. The mean of metric values (M) and comprehensive scores (C_score) of different pipelines on HiFi dataset.

Contigs N50 (kb) Mismatches Indels Completeness C_score

Flye_Pilon 24.0 1034.4 108.8 15.5 1704.6 0.778
NextDenovo_Pilon 15.6 914.5 97.4 14.1 1705.0 0.760
hifiasm_Pilon 37.7 787.8 190.3 36.1 1709.6 0.649
Flye 24.0 1034.6 637.8 57.2 1711.3 0.647
NextDenovo 15.6 914.6 634.7 56.2 1709.0 0.602
hifiasm 37.7 787.9 707.6 77.4 1705.6 0.424
HiCanu_Pilon 113.1 495.3 659.4 101.9 1723.5 0.292
HiCanu 113.1 495.3 988.3 128.3 1726.6 0.200

∗Each M was calculated by the average of 11 HiFi subset metrics (Mi) from 10X to 380X.

Table 3. Optimal pipelines with C_score>0.9 by comparison of all pipelines on ONT and HiFi datasets.

Pipelines Flye_Pilon_HiFi ND_Pilon_HiFi Flye_HiFi Flye_Pilon_ONT Flye_MP_ONT

C_score 0.971 0.942 0.922 0.921 0.919

∗All C_scores of 43 pipelines can be found in Supplementary Table S4, see Supplementary Data available online at https://academic.oup.com/bib

with three polishers, Pilon, Medaka_Pilon and Medaka.
Miniasm is the most distinct assembler due to its absence
of raw reads correction step.

Evaluation of assemblers on HiFi datasets
We compared four assembly tools designed to leverage
the full potential of HiFi reads, HiCanu, hifiasm, Flye
and NextDenovo (Figure 6). HiCanu, showed signifi-
cant differences in assembly quality. Assemblies by
HiCanu have the lowest quality in both continuity
and accuracy, with the lowest N50 and the highest
Mismatches and Indels at any depth, except 380x.
However, HiCanu is good at improving genomic integrity,
and it obtained the best BUSCO evaluation results with
the highest number of complete genes in most subsets
(Figure 6E).

The other three tools performed similarly, except that
hifiasm was more sensitive to the data depth. The quality
of the genome constructed by hifiasm decreased at very
low (10x) or high (>300x) depths, while the number of
contigs, Mismatches and Indels increased dramatically at
320x and 380x.

The effect of polishing process on HiFi datasets
was also tested. Each assembly obtained from HiFi
datasets was polished by Pilon. Pilon correction sig-
nificantly improves genome accuracy and genome
integrity regardless of the assembly tool. Therefore, the
conclusion that the post-assembly correction process
is necessary to improve genome quality is not only
applicable to the ONT dataset but also to the HiFi
dataset.

C_scores of these eight pipelines (four assemblers
with or without Pilon polishing) showed that Flye_Pilon
and NextDenovo_Pilon are two superior pipelines with
C_score of 0.778 and 0.760 (Table 2), which indicates
that these two pipelines are the most stable choice for
assembling Hifi data.

Comparison of optimal pipelines from ONT and
HiFi datasets
To investigate the impact of the two sequencing methods
on genome construction, we compared all 43 pipelines
(35 ONT-based and 8 HiFi-based) through C_score.
Mean metric values of 10 subsets from 10X to 320X
were used and scaled across these 43 pipelines and
further calculated the C_scores (Table S4). Pipelines
with C_scores>0.9 are shown in Table 3. Both pipelines,
Flye_Pilon and NextDenovo_Pilon using HiFi reads,
constructed the best assemblies, closely followed by the
Flye pipeline using HiFi reads and Flye_Pilon and Flye_MP
pipelines using ONT reads.

We then compare the assemblies from 2 optimal
pipelines of HiFi data and ONT data in detail (Figure
S7), the contig numbers of assemblies obtained by the
HiFi data are lower than that of the ONT data, the N50
and complete gene number from BUSCO of assemblies
obtained by HiFi were slightly higher than that of
ONT (Supplementary Figure S7, see Supplementary
Data available online at https://academic.oup.com/bib),
indicating that the genome quality from HiFi reads has
an overall improvement compared to ONT, which is
consistent with the C_score comparison. However, HiFi
pipelines have introduced more Mismatches or Indels
than that of ONT pipelines when mapped to the refer-
ence genome from the NCBI database. Considering the
high quality of HiFi raw reads (Supplementary Figure S8,
see Supplementary Data available online at https://
academic.oup.com/bib), there may be a possibility that
the advanced HiFi method detected some details that
were ignored in the previous genome construction and
further improved the quality of the reference genome. For
computational performance, genome construction based
on HiFi data consumed less computational resources
compared to ONT. Here we apply three tools, Canu,
Flye and NextDenovo, to both ONT and HiFi datasets,
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Figure 7. The percentage of annotated genes built by assemble_Medaka_Pilon pipeline on ONT (A) and assemble_Pilon pipeline on HiFi (B) datasets.
Numbers on the graph’s right side are the percentage of annotated genes at 800X (A) or 380X (B).

the CPU time and memory usage of HiFi datasets are
smaller than that of ONT datasets at the same depth
(Figures 2F and 6F).

Notably, when the data depth is extremely low such
as 10X, Flye performs outstanding in both HiFi and
ONT data. However, the characteristics of different tools
should be considered, for example, the powerful phased
assemble ability of hifiasm will open the door for the
haplotype resolution of polyploid genomes.

The effect of data depth on assemblers and
polishers
The assembly quality was highly variable across the
different assemblers on low-depth subsets (10X, 20X,
40X in Figure 2 and 10X in Figure 6) and kept robust on
relative high-depth subsets. Different from the assembly
process, the polishing process is not sensitive to data
depth (Supplementary Figure S4, see Supplementary
Data available online at https://academic.oup.com/bib),
Notably, it is not the deeper the better in the choice
of sequencing depth. On one hand, the subsets with
higher coverage will hardly further improve the quality
of assembly over a certain threshold. On the other hand,
the higher the depth, the more computing resources
will be required, and ultrahigh-depth data may even
confuse the assembler to crash so that cannot obtain
the assembly. Therefore, it is necessary to determine a
suitable depth. In our results, the dataset with about 20X
can build most genomes, but for further improvement
on genome quality, an increase in sequencing depth
is necessary. For high-quality genome construction
of fungi such as yeast, the sequencing depth should
not be less than 80X for ONT (Figure 2) and 20X for
HiFi data (Figure 6), but it is also not recommended to
exceed 320X if assembled by Canu or Miniasm on ONT
dataset.

Yeast genome annotation
The percentage of genes that have been built by ONT
and HiFi datasets with Medaka_Pilon polishing and Pilon
polishing process are shown in Figure 7. For the full ONT
or HiFi datasets, the genomes obtained by most pipelines
can consist of over 87% genes. Flye has the best gene-
built ability that is independent of sequencing method
and data depth even at 10X. The reduction of the total
annotated genes percentage in other assemblers such as
Necat and Canu on ONT data or NextDenovo on HiFi data
was mainly due to the sensitivity to low-depth subsets,
especially at 10X.

To investigate the ability of genome annotation
by different pipelines, we compared the genes iden-
tified from four optimal pipelines with 320X sub-
set. Most of the genes (5259 genes) can be success-
fully constructed by all pipelines and there are 79
and 6 genes that can only be built by ONT and
HiFi datasets, respectively (Supplementary Figure S9,
see Supplementary Data available online at https://
academic.oup.com/bib), which indicates that the choice
of sequencing method may have an effect on genome
annotation.

Case study
According to the comparison results above, four optimal
pipelines were selected, Flye_Pilon and Flye_MP for
ONT data and Flye_Pilon and NextDenovo_Pilon for
HiFi data, to build the draft genome of other two
industrial yeast strains of different genera, S. pombe
FLO-DUT (SP) and S. cerevisiae CICC-1445 (SC). Although
the accuracy of the assembly such as Mismatches or
Indels cannot be assessed since the reference is not
available for these strains, we still evaluated other
metrics on SP and SC assemblies and demonstrated in
Tables 4 and 5.
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Table 4. Statistic information on the de novo assemblies from the best four pipelines for the S. pombe FLO-DUT (SP)

Assembly SP

Flye_Pilon_ONT Flye_MP_ONT ND_Pilon_HiFi Flye_Pilon_HiFi

Number of contigs 8 6 6 4
Largest contig (Mb) 5.554 5.555 5.624 5.595
Total length (Mb) 12.73 12.73 12.81 12.65
GC (%) 36.05 36.05 36.05 36.05
N50 (Mb) 4.495 4.495 4.555 4.554
BUSCO Complete 811 797 804 801

Fragmented 110 108 111 111

Table 5. Statistic information on the de novo assemblies from the best four pipelines for the S. cerevisiae CICC-1445 (SC)

Assembly SC

Flye_Pilon_ONT Flye_MP_ONT ND_Pilon_HiFi Flye_Pilon_HiFi

Number of contigs 31 32 15 61
Largest contig (Mb) 1.475 1.479 2.417 0.978
Total length (Mb) 11.84 11.87 12.05 12.21
GC (%) 38.37 38.38 38.40 38.27
N50 (Mb) 0.811 0.818 0.946 0.580
BUSCO Complete 1622 1613 1712 1683

Fragmented 149 148 144 149

Both assemblers can build the high-continuity genome
with N50 about 4500 kb in SP and 800 kb in SC. NextDen-
ovo_Pilon pipeline with HiFi data obtained genome with
the highest N50 in both strains. And both HiFi pipelines
have significantly higher complete gene numbers on SC
assemblies than that of ONT pipelines.

The complete genes of SC evaluated from BUSCO were
more than that of SP, this is not due to the difference in
assembly quality but the difference in reference anno-
tated species datasets. The closest reference dataset of
SC is saccharomycetes_odb10 (class level) while that
of SP is ascomycota_odb10 (phylum level), phylum has
the higher taxonomic level so that contains more other
species-specific genes.

Discussion
In this study, we performed 455 and 88 de novo assemblies
of S. cerevisiae S288C on high-coverage ONT and HiFi data,
respectively, to comprehensively evaluate the influence
of assembly tools, polishing tools and sequencing depth
on eukaryotic genome construction. According to our
C_score, the pipelines based on Flye assembler perform
best on both ONT and HiFi datasets, and NextDenovo
is another recommended choice for HiFi data. The pol-
ishing process is necessary to improve the qualities of
assemblies and Medaka_Pilon performs best for ONT
datasets. In the case application of two nonreference
strains, SP and SC, the genome obtained from HiFi data
are more continuous and complete than that of ONT

data. For the selection of these two sequencing plat-
forms, other factors should also be considered such as
price, throughput and convenience. Unlike Flye, which
can recover some short sequences such as plasmids
therefore result in more contigs, NextDenovo has fewer
contig numbers, even lower than the number of chromo-
somes in high-depth datasets, suggesting that there may
be excessive overlap problems.

Among all tested assemblers, only Unicycler takes the
hybrid assembly pipeline and performs inferior in conti-
guity but superior in accuracy. On one hand, the addition
of short reads increases the fragmentation of the assem-
bly, while on the other hand, it really reduces the Indels
through the integration of short reads [26]. In addition,
since Unicycler was intended to build the genome of
prokaryotes which has a relatively short length and low
complexity, it doesn’t need to balance the assembly qual-
ity and computing performance. While in S. cerevisiae,
computational consumption is its bottleneck, which is
∼20 times that of Flye.

Different from the previous evaluation work of ∼30X
ONT data in S. cerevisiae [18], we used the ultrahigh-depth
dataset for the first time to comprehensively assess
the impact of sequencing depth on the construction of
genomes with different tools. Generally speaking, the
quality of the genome improves with the sequencing
depth and tends to be stable after 80X and 20X on ONT
and HiFi datasets, respectively, but the computing con-
sumption will continue increasing. For most assemblers,
20X data is the lower limit for genome construction,
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while an increase in sequencing depth is necessary
for further improvement. Qualities of de novo genome
assembly have an important impact on downstream
annotation and comparative genomics applications [27].
This benchmark study not only contributes to the high-
quality genome construction of yeast, but also provides
insights for other eukaryote genomes such as mold,
microalgae and even complex human genomes.

Key Points

• Comprehensive benchmarking on the latest assembly
and polishing tools for two advanced TGS datasets (ONT
and HiFi) for eukaryotic model organism.

• Comparison of different assemblers across a wide range
of sequencing depths for the first time.

• Flye is the most robust assembler on both ONT and HiFi
datasets and NextDenovo also performs outstandingly
on HiFi datasets.

• High-quality genome construction of two unsequenced
industrial yeast strains.
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