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Discovery and Engineering of Cytochrome
P450s for Terpenoid Biosynthesis
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Terpenoids represent 60% of known natural products, including many drugs
and drug candidates, and their biosynthesis is attracting great interest. How-
ever, the unknown cytochrome P450s (CYPs) in terpenoid biosynthetic path-
ways make the heterologous production of related terpenoids impossible, while
the slow kinetics of some known CYPs greatly limit the efficiency of terpenoid
biosynthesis. Thus, there is a compelling need to discover and engineer CYPs
for terpenoid biosynthesis to fully realize their great potential for industrial
application. This review article summarizes the current state of CYP discovery
and engineering in terpenoid biosynthesis, focusing on recent synthetic biology
approaches toward prototyping CYPs in heterologous hosts. We also propose
several strategies for further accelerating CYP discovery and engineering.

Terpenoids and Their Biosynthesis
Terpenoids represent the most diverse and widespread family of natural products. They not only
play vital roles in complex biochemical processes such as stress response and cytophylaxis [1] but
also have various bioactivities and extensive applications in the food, cosmetics, and pharma-
ceutical industries [2,3]. Some terpenoids in particular may function as drugs to treat various
human diseases. For example, the sesquiterpenoid artemisinin is used as an antimalarial drug [4],
and the diterpenoid Taxol was developed to be an important anticancer chemotherapy drug [5].

Terpenoid biosynthesis can be divided into four stages: building block formation, condensa-
tion, core structure assembly, and post-modification (Figure 1). All terpenoids are derived from
the universal C5 building blocks isopentenyl pyrophosphate (IPP) and dimethylallyl pyrophos-
phate (DMAPP). In the first stage, IPP and DMAPP are synthesized via the mevalonate (MVA)
pathway or a mevalonate-independent pathway (see Figure 1 for details) [6,7]. In the second
stage, condensation of one molecule of DMAPP with one, two, or three molecules of IPP leads
to geranyl pyrophosphate (GPP), farnesyl pyrophosphate (FPP), or geranylgeranyl pyrophos-
phate (GGPP), the direct precursor of monoterpenoids, sesquiterpenoids, or diterpenoids,
respectively. Alternatively, condensation of two molecules of FPP generates long-chain C30

triterpenoids. In the third stage, these direct precursors are further assembled into the core
structures of different terpenoids via terpene synthases (see Glossary) [8]. Finally, terpenoid
core structures undergo a series of post-modifications in which cytochrome P450s (CYPs)
are usually heavily involved, yielding final terpenoid products with wide chemical diversity. Until
now, CYPs as a superfamily of heme monooxygenases have been found to modify more than
97% of all terpenoids, leading to structural diversity and corresponding bioactivity [9]. These
CYPs mainly carry out selective oxidations, providing chemical functionality for subsequent
acetylation, esterification, alkylation, and other reactions. In addition, a growing number of
CYPs have been reported to exhibit promiscuity in converting different substrates [10] or
yielding different products [11].
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Glossary
Chassis cell: a host cell with
particular advantages for
heterologous terpenoid biosynthesis.
Cofactor: a non-protein molecule
required for supporting an enzyme’s
activity.
Combinatorial biosynthesis:
harnessing the promiscuity of
enzymes, including CYP and
terpenoid cyclase, to generate novel
terpenoids by shuffling, mixing, and
matching enzymes from different
terpenoid biosynthetic pathways.
CRISPR-Cas: a technology that
enables precise, multiplex, and
efficient genome editing. It consists
of a Cas protein and a guide RNA.
Cytochrome P450: a class of
heme-containing proteins. Members
exhibit a maximum absorbance peak
at 450 nm when reacting with carbon
monoxide.
Cytochrome P450 reductase: a
membrane-bound protein
responsible for electron transfer from
NAD(P)H to cytochrome P450.
Directed evolution: a commonly
used strategy in protein engineering
that mimics the natural evolution
process to isolate desired mutant.
Heterologous expression:
expression of a gene from one
species in another species that does
not naturally harbor it.
Post-modification: the enzymatic
modification of a terpenoid skeleton
to form the final terpenoid.
Rational design: a protein
engineering strategy based on
protein structure–activity relationship.
Reactive oxygen species: reactive
molecules derived from molecular
oxygen, including superoxide,
peroxides, hydroxyl radical, and
others.
Terpene synthase: the enzyme
responsible for cyclizing
polyisoprenoid diphosphates to
generate the terpenoid skeleton.

Bottlenecks for Efficient Biosynthesis of Terpenoids: Cryptic CYPs and Low
Activity of CYPs
Understanding the post-modification steps in terpenoid biosynthesis is of particular importance
for their efficient production, because such selective reactions performed by CYPs are
extremely hard to achieve via conventional chemical routes. In contrast to the ample research
on the first three stages of terpenoid biosynthesis [12,13], the detailed elucidation of post-
modification steps of terpenoid biosynthesis is insufficient. To date, biosynthetic pathways of
many bioactive terpenoids, such as paclitaxel and ganoderic acids, remain elusive due to the
vast proportion of biosynthetic steps that may involve uncharacterized CYPs [14,15]. In
addition, except for Bacillus megaterium-derived CYP102A1 (P450BM3) and Pseudomonas
putida-derived CYP101A1 (P450cam), most characterized CYPs have low kcat values in the
range of �1–300 min�1, which are too slow to have practical applications in industry [16].
Furthermore, most CYPs require an additional protein partner, cytochrome P450 reductase
(CPR), to obtain electrons from NAD(P)H for oxygen activation. The insufficient electron transfer
from CPR to CYP, as usually observed in many CYP-catalyzed processes, may lead to
diminished catalytic rates [17]. Moreover, CYP catalytic activity can be greatly affected by
the uncoupling between product formation and NAD(P)H consumption. The subsequent
leakage of NAD(P)H may result in production of reactive oxygen species that, in turn,
can destabilize CYPs (Box 1) [16].

Cryptic CYPs and the low activity of CYPs can significantly hinder the efficient biosynthesis
of terpenoids. In the following sections, we summarize strategies for CYP discovery and
engineering for terpenoid biosynthesis. First, traditional CYP discovery approaches, includ-
ing gene deletion, gene silencing, and in vitro enzymatic assay, as well as their drawbacks,
are introduced. While traditional approaches are still commonly used and sometimes critical
in determining CYP functions in native hosts, their limitations make them insufficient to
explore CYPs from genetically intractable species. With guidance from multi-omics infor-
mation, prototyping CYP candidates in an engineered genetically tractable host using
synthetic biology approaches has provided a clear systematic workflow to address the
key issues in CYP discovery. Next, we review CYP engineering studies related to terpenoid
biosynthesis. Finally, we propose perspectives on how to further accelerate CYP discovery
and engineering.

Traditional Approaches for CYP Discovery
Traditional approaches for CYP discovery include gene deletion, gene silencing, and in vitro
enzymatic assays (Box 2; Table 1; Figure 2). Successful examples are commonly found in
microorganisms with well-understood genetic backgrounds and easy access to genetic
toolkits.

Gene Deletion
Gene deletion is a method commonly used to deduce CYP functions in native hosts with well-
established genetic manipulation tools, such as Aspergillus and Penicillium. For example,
fumagillin is a meroterpenoid that is synthesized via a polyketide-terpenoid hybrid pathway
( fma biosynthetic gene cluster) from Aspergillus fumigatus. Deletion of the CYP gene Af510 in
the fma cluster abolished fumagillin production but increased the accumulation of b-trans-
bergamotene, indicating that Af510 is a b-trans-bergamotene oxidase in fumagillin biosynthe-
sis [18]. In another study, deletion of two CYP genes, vrtE and vrtK, was performed to
investigate their functions in the meroterpenoid viridicatumtoxin biosynthesis in Penicillium
aethiopicum. Both vrtE and vrtK knockout mutants were not able to produce viridicatumtoxin
but exhibited accumulation of the new intermediates naphthacenedione and
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Terpenoid Biosynthesis Pathways. Terpenoid biosynthesis consists of four stages: building block formation, condensation, core structure assembly,
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previridicatumtoxin, respectively. Accordingly, VrtE and VrtK were speculated to be responsible
for C5-hydroxylation and spirobicyclic ring formation, respectively [19].

Despite the indispensable role of gene deletion in elucidation of CYP function, it is impossible to
perform gene deletion in many terpenoid producers with immature genetic manipulation
strategies. Even for some genetically tractable species (such as plants), their large unknown
genomes and multi-copy alleles make it very difficult to perform proper gene deletion. However,
development of gene editing tools, such as the emerging CRISPR-Cas technology [20],
particularly the CRISPR-Cas ribonucleoprotein editing technology [21], may provide a novel
way to address this problem.

and post-modification. AACT, acetoacetyl-CoA thiolase; ADS, amorphadiene synthase; CDP-ME, 4-diphosphocytidyl-2-C-methylerythritol; CDP-MEP, 4-dipho-
sphocytidyl-2-C-methyl-d-erythritol-2-phosphate; CMK, CDP-ME kinase; CMS, MEP cytidylyltransferase; DMAPP, dimethylallyl pyrophosphate; DXP, 1-deoxy-d-
xylulose 5-phosphate; DXR, DXP reductoisomerase; DXS, DXP synthase; FPP, farnesyl pyrophosphate; FPS, FPP synthase; G3P, glyceraldehyde 3-phosphate;
GGPS, GGPP synthase; GPP, geranyl pyrophosphate; GGPP, geranylgeranyl pyrophosphate; HDR, HMB-PP reductase; HDS, HMB-PP synthase; HMB-PP, 4-
hydroxy-3-methyl-but-2-enylpyrophosphate; HMG-CoA, 3-hydroxy-3-methylglutaryl-CoA; HMGR, HMG-CoA reductase; HMGS, HMG-CoA synthase; IDI, IPP
isomerase; IPP, isopentenyl pyrophosphate; LS, limonene synthase; MCS, ME-cPP synthase; ME-cPP, 2-C-methyl-d-erythritol-2,4-cyclodiphosphate; MEP, 2-C-
methyl-d-erythritol 4-phosphate; MK, MVA kinase; MVA, mevalonate; MVD, MVPP decarboxylase; MVP, mevalonate-5-phosphate; MVPP, mevalonate pyropho-
sphate; PMK, MVP kinase; TXS, taxadiene synthase.

Box 1. Uncoupling in CYPs and Possible Solutions

CYP reactions take place at the heme domain, where substrate binds and electron transfer occurs. CPR-mediated
insufficient electron transfer from NAD(P)H to the heme domain, also known as an uncoupling event, leads to byproduct
formation without substrate oxidation. The subsequent leakage of reducing equivalents generates reactive oxygen
species that can induce cellular stress and result in decreased cell growth, protein expression, and terpenoid
production. One way to solve the problem is to create self-sufficient CYPs by fusing CYPs with their partner CPRs.
Another possible strategy is to colocalize CYPs and CPRs in the same subcellular compartment to maximize their
electron transfer efficiency.

Box 2. CYP Discovery Approaches

CYP discovery is a prerequisite to elucidate terpenoid biosynthetic mechanisms and to efficiently synthesize terpenoids.
Although many approaches for CYP discovery have been adopted in the past, synthetic biology approaches circumvent
some limitations of traditional methods, leading to a higher success rate of CYP discovery.
1. Traditional methods for CYP discovery involve gene deletion and gene silencing in native hosts. After this process,

metabolites from both mutant and wild type are carefully compared, and detailed functions of target CYPs are
deduced accordingly.

2. A few CYPs can be overexpressed and purified while their substrates are easily obtained, and then in vitro enzymatic
assay is a good way to confirm their activities.

3. Recently developed synthetic biology approaches, including multi-level omics analysis, heterologous CYP expres-
sion in genetically tractable hosts, and metabolic engineering of chassis cells, greatly accelerate CYP discovery.
Multi-level omics analysis narrows down the CYP candidate pool for a particular pathway. Heterologous CYP
expression provides key CYP expression platforms and access to some previously unobtainable substrates.
Advances in metabolic engineering of model microorganisms, including E. coli and S. cerevisiae, establish platforms
for the discovery and characterization of CYPs and by extension enable the de novo biosynthesis of interesting
terpenoids.

4. Rapid development in the field of genome editing provides ample tools for further engineering of heterologous hosts
that will significantly increase substrate or precursor supply, leading to a higher success rate for CYP discovery and
high yield of target terpenoid for potential industrial applications.

5. CYP engineering through directed evolution or rational design is an alternative way to obtain CYPs with desired
properties for a particular terpenoid biosynthetic pathway. It also expands the substrate scope of known CYPs and
widens their applications in various situations.
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Gene Silencing
To circumvent the difficulty in gene deletion, gene silencing is an alternative technique to
identify the roles of CYP candidates in plants. This method was used to downregulate the
expression of CYPs in Catharanthus roseus that were potentially involved in the biosynthesis
of secologanin, a precursor for the assembly of multiple monoterpenoid indole alkaloids.
CrDL7H was characterized as a 7-deoxyloganic acid 7-hydroxylase involved in secologanin
biosynthesis [22]. In another study, silencing cyp76ah1 in Salvia miltiorrhiza significantly
increased the accumulation of miltiradiene and decreased the amount of tanshinones
compared to the wild type, demonstrating the pivotal role of CYP76AH1 in the biosynthesis

Table 1. Typical Examples for CYP Discovery

Technique Organism(s) Enzyme(s) Produced terpenoid(s) Refs

Traditional approach

Gene deletion
Aspergillus fumigatus Af510 Fumagillin [18]

Penicillium aethiopicum VrtE, VrtK Viridicatumtoxin [19]

Gene silencing
Catharanthus roseus CrDL7H Secologanin [22]

Salvia miltiorrhiza CYP76AH1 Tanshinones [23]

In vitro enzymatic assay
Western redcedar CYP750B1 Sabinol [24]

Taxus CYP725A4 Taxadiene-5a-ol [25]

Synthetic biology approach

Multi-level
omics-guided CYP discovery

Original host: Salvia pomifera
Heterologous host:
Saccharomyces cerevisiae

Fifteen CYP candidates Carnosic acid [30]

Original host: Maesa lanceolata
Heterologous host: S. cerevisiae

CYP716A75, CYP87D16 C-28 and C-16a
oxidized b-amyrin

[31]

Heterologous
expression in
genetically tractable hosts

Original host: Sorangium cellulosum
So ce56
Heterologous host: Escherichia coli

CYP260A1, CYP264B1 Eremophilane-,
humulane-, and
cedrane-type
structures; allylic alcohols

[33]

Original host: Mycobacterium HXN-1500
Heterologous host: E. coli

ahpGHI (�)-L-Perillylalcohol [34]

Original host: Ganoderma lucidum
Heterologous host: S. cerevisiae

CYP5150L8 Ganoderic acid [15]

Original host: Medicago truncatula
Heterologous host: S. cerevisiae

CYP93E2, CYP716A12 4-epi-Hederagenin [38]

Original host: Lotus japonicas
Heterologous host: N. benthamiana

LjCYP71D353 20-Hydroxylupeol [41]

Original host: oats
Heterologous host: N. benthamiana

AsCYP51H10 12,13b-Epoxy-
16b-hydroxy-b-amyrin

[42]

Original host: Emericella variecolor
NBRC 32302
Heterologous host: Aspergillus oryzae
NSAR1

Qnn-P450 Quiannulatic acid [43]

Metabolic engineering
of chassis cells

S. cerevisiae – Amorpha-4,11-diene [48]

S. cerevisiae and Pichia pastoris – trans-Nootkatol [51]

S. cerevisiae – b-Amyrin and its derivatives [54]

E. coli – b-Carotene [55]
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of tanshinones [23]. However, similar to gene deletion, gene silencing is often infeasible for
genetically intractable hosts.

In Vitro Enzymatic Assays
In vitro enzymatic assays can characterize the function of CYPs with relatively good solubility
and stability. Because of the absence of genetic regulation or transport barriers, the cell-free
environment facilitates substrate access and product detection. The catalytic role of Western
redcedar CYP750B1 was confirmed by an in vitro assay using cell-free tissue extracts in the
presence of NADPH and both (+)-trans-sabinol and (+)-cis-sabinol. Only the conversion of
(+)-trans-sabinol to sabinone was detected, demonstrating the stereo-selectivity of CYP750B1
[24]. Recently, the in vitro lipid nanodisc assay has been successfully used to characterize the
function of CYP725A4 from Taxus. The purified C-5 hydroxylase CYP725A4 was encapsulated
together with CPR, NADPH, and taxadiene in a lipid nanodisc for in vitro bioconversion, and
taxadiene-5a-ol was identified as the primary product [25]. Such a one-pot in vitro assay using
purified CYP together with its partner CPR, cofactor, and substrate could avoid CYP deacti-
vation and the possible interference from intracellular substrate during microsomal preparation.

Despite the successful examples mentioned above, difficulties still persist in in vitro characteri-
zation of CYPs. For instance, during purification, membrane-bound CYPs usually exhibit poor
solubility or aggregation, which may occlude the active sites of enzymes and block their
functions.

Synthetic Biology Approaches for CYP Discovery
Given that the traditional methods mentioned above have various shortcomings, recent
advances in synthetic biology have created alternative methods for CYP discovery. Synthetic
biology is distinguished by its potential for rationally designing novel biological systems with
standardized components, aiming to construct a formulated objective or an efficient cell factory
that can tackle challenges. Multi-level omics analysis reveals the most promising candidates
and promotes successful and efficient CYP discovery. Benefitting from the efficient genetic
manipulations of heterologous hosts, heterologous expression of CYPs for subsequent
characterization is standardized and convenient. With a modularized and fine-tuned supply of
precursors, cofactors, and energy, metabolic engineering of chassis cells maximizes the
likelihood of product detection. Taken together, these synthetic biology approaches illustrate a
clear systematic workflow that can accelerate CYP discovery (Box 2; Table 1; Figure 2).

Multi-level Omics-Guided CYP Discovery
The first aspect of CYP discovery using a synthetic biology approach is the identification of
candidate CYPs. Rapid development in genome and transcriptome sequencing technologies
makes it much easier to obtain a large CYP candidate pool. However, it is very difficult to
pinpoint the exact CYPs involved in a target pathway. Detailed transcriptome analyses of
samples from different tissues, times, and mutants, combined with metabolomics studies
targeting specific terpenoids, have been used to narrow down the CYP candidate pool
[24,26–29]. For example, to elucidate the biosynthesis of carnosic acid and related diterpe-
noids in Salvia pomifera, 81 contigs similar to CYP genes were generated via genome
sequencing. Based on the elevated transcription in the trichome of S. pomifera and sequence
similarity with other plant-derived CYP71 and CYP76 family members, 15 CYP candidates
were short-listed for further analysis [30]. In addition to looking for clues in samples with internal
high transcript abundance, external stimuli can also induce terpenoid production to reveal
cryptic key CYPs. For example, transcription profiling on methyl jasmonate (MeJA)-treated
Maesa lanceolata shoot cultures was performed to identify maesasaponin biosynthesis genes.
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After MeJA treatment for 24 h, seven transcriptional upregulated CYPs were retained for
functional analyses. Finally, CYP716A75 and CYP87D16 were identified to be responsible
for catalyzing the C-28 and C-16a oxidations of b-amyrin, respectively [31].

Heterologous Expression in Genetically Tractable Hosts
Because they have known genome sequences, ample genetic tools, and diverse precursors for
terpenoid biosynthesis, Escherichia coli and Saccharomyces cerevisiae have been extensively
developed for decades as important hosts to biosynthesize terpenoids [32]. Sesquiterpene
hydroxylases CYP260A1 and CYP264B1 from Sorangium cellulosum So ce56 were expressed
in E. coli to compare their substrate specificities and regio-selectivities. As a result, CYP260A1
was identified to catalyze sesquiterpene conversion for eremophilane-, humulane-, and
cedrane-type structures, and CYP264B1 was characterized as a highly selective sesquiter-
pene hydroxylase that catalyzed zerumbone, a-humulane, b-caryophyllene, and eremophi-
lane-type substrates to produce allylic alcohols [33]. Most native CYPs involved in limonene
biotransformation have a substrate preference for (+)-d-limonene. To use (�)-l-limonene,
ahpGHI from Mycobacterium HXN-1500 was expressed in E. coli to convert (�)-l-limonene
to (�)-l-perillylalcohol [34]. In addition, since the endoplasmic reticulum and post-translational
modification system of yeast are suitable for expressing membrane-bound eukaryotic CYPs,
functional expression of eukaryotic CYP candidates was often conducted in yeast [15,26,
35–37]. For example, to identify a CYP for converting lanosterol to triterpenoid ganoderic acid, a
systematic screening of CYP candidates from Ganoderma lucidum was performed in S.
cerevisiae. The CYP5150L8-overexpressed strain generated 3-hydroxy-lanosta-8, 24-dien-
26 oic acid (ganoderic acid HLDOA), and the final titer in 120-h fermentation reached 14.5 mg/l
[15]. In addition to biosynthesis of the known terpenoids, rare triterpenoids, which are absent in
the native host, could also be produced in engineered yeasts. Expression of bAS, CPR,
CYP93E2, and CYP716A12 enabled production of 4-epi-hederagenin in the recombinant
yeast, which is a triterpenoid not reported in Medicago truncatula [38].

The transient expression system of Agrobacterium tumefaciens-infected Nicotiana benthami-
ana is an alternative platform to study plant-derived CYPs [26,39,40]. Using this platform,
candidate CYPs from Lotus japonicus were heterologously expressed in N. benthamiana
leaves infiltrated with A. tumefaciens, and gas chromatography (GC)-mass spectrometry
analysis of extracted metabolites indicated that LjCYP71D353 catalyzed the formation of
20-hydroxylupeol from dihydrolupeol [41]. Similarly, heterologous coexpression with b-amyrin
synthase in N. benthamiana leaves helped identifying an oat-derived CYP AsCYP51H10 [42].

Aspergillus is another potential host for CYP expression. The Qnn-P450 of Emericella variecolor
NBRC 32302 was heterologously coexpressed with sesterterpene synthase EvQS in Asper-
gillus oryzae NSAR1 and able to successively oxidize C-19 of quiannulatene to quiannulatic
acid [43]. Another promising microbial host for terpenoid biosynthesis is Bacillus subtilis. This
microbe has an inherent methylerythritol phosphate (MEP) pathway and a wide substrate
spectrum available for various terpenoid biosyntheses [44]. Furthermore, there are a few
successful examples of heterologous biosynthesis of terpenoids in the moss Physcomitrella
patens, due to its natural tolerance toward terpenoids, distinguished endogenous terpenoid
producing profile that facilitates the characterization of exogenous products, and accessibility
to genome editing tools [45].
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Metabolic Engineering of Chassis Cells
CYP discovery is highly dependent on how well a host is engineered. First, the host must
provide sufficient rare and sometimes unstable substrates to confirm CYP activity, which
otherwise has to rely on grueling purification from native hosts. Second, host metabolic
engineering provides efficient cofactor regeneration, electron transfer, and CYP expression
to maximize CYP activity. Last, membrane engineering facilitates the efficient storage of
hydrophobic terpene products so that product titers can be significantly improved.

Host engineering for precursor supply is a generally applicable approach for efficient terpenoid
biosynthesis [46]. Acetyl-coenzyme A (CoA) is an important intermediate in the MVA pathway
for terpenoid biosynthesis, and its concentration in yeast mitochondria is estimated to be
20–30-fold higher than that in the cytosol [47]. The eight-gene FPP biosynthetic pathway was
expressed in yeast mitochondria to produce amorpha-4,11-diene; this strategy overcame the
low acetyl-CoA concentration and bypassed competition in the cytosol [48]. In another
example, an engineered yeast platform incorporated different modules of prenyl diphosphate
substrate synthesis, terpene skeleton synthesis, and terpene skeleton decoration, and heter-
ologous CPR was used to identify the catalytic roles of CYP76AH24, CYP71BE52, CYP76AK6,
and CYP76AK8 in carnosic acid biosynthesis [30].

The oxidation of CYP requires a complicated source of electrons from NAD(P)H via redox
partners; thus, these redox partners are often heterologously expressed to support the
activities of CYPs [49,50]. To ensure sufficient suitable CPRs for supporting the catalytic
capacity of CYPs, a novel positive effector ICE2 (the type III membrane protein) was identified
with the ability to stabilize CPRs in both S. cerevisiae and Pichia pastoris. Overexpression of
ice2 improved the conversion of (+)-valencene to trans-nootkatol by 40–50%, indicating the
potential of ICE2 as a general tool for improving the performance of recombinant CYPs in
yeasts [51].

Plant-derived CYPs and CPRs are usually insoluble and localized at the endoplasmic reticulum
(ER) membrane by a hydrophobic N-terminal domain, hindering their reconstitution and
heterologous expression in microbial hosts. Hence, engineering the ER or cell membrane is
a promising strategy for improving the expression of eukaryotic CYPs and enhancing the
storage of hydrophobic terpenoid products [52,53]. Disrupting the phosphatidic acid phos-
phatase gene pah1 led to the expansion of the ER and enhanced the accumulation of b-amyrin
and its derivatives [54]. The membrane of E. coli was engineered by a combination of over-
expressing membrane-bending proteins and enhancing the membrane synthesis pathway,
leading to a 2.9-fold increase of b-carotene production [55].

Engineering CYPs in Terpenoid Biosynthesis
To obtain a CYP with improved or novel functions, several strategies can be generally adopted
for CYP engineering, including directed evolution [56] and rational design [57]. In addition,
when eukaryotic CYPs are expressed in heterologous hosts, the membrane-anchored
domains are usually truncated to promote the catalytic performance of CYPs (Figure 3).

Directed Evolution
Directed evolution is conducted to obtain CYP variants with desired characteristics, including
enhanced enzyme activity, stability, or altered substrate specificity. For example, to avoid
using the expensive cofactor NADPH in cell-free, CYP-catalyzed reactions, the fusion protein
P450cin-ADD-CinC was engineered to use zinc/cobalt(III) sepulchrate as electron delivery
system for an increased hydroxylation activity toward 1,8-cineole. After two rounds of
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sequence saturation mutagenesis, with each followed by one round of multiple-site saturation
mutagenesis, the variant KB8 exhibited a 3.8-fold increase in catalytic efficiency (from 7 to
28 mM�1 min�1) and a 1.5- and 4-fold increase in product yield and product formation rate,
respectively, compared to the control enzyme P450cin-ADD-CinC with platinum/cobalt (III)
sepulchrate as the electron delivery system [58]. In another study, using iterative saturation
mutagenesis, the CYP BM3 (F87A) mutants were able to convert testosterone to either 2b- or
15b-alcohols in a highly selective manner [59]. The most outstanding variant, KSA-14,
exhibited a 152-fold increase in product formation rate and significant improvement in the
kcat value (from 0.31 to 6.64 s�1) [59]. In the engineering of P450BM3, efficient directed
evolution was conducted on the basis of the mutability landscapes and molecular dynamics
simulations, generating small but high-quality libraries. The resultant P450BM3 mutants can
hydroxylate different steroids specifically at the C16-position in both regio- and
diastereoselective manners [60].

Rational Design
Rational protein design is usually used to improve CYP performance with a known crystal
structure or an existing homology model. Based on docking analysis of a homology model with
progesterone, saturation mutagenesis followed by site-directed mutagenesis was performed
to significantly change the regio- and stereoselectivities of CYP106A2 from the 15b-position to
the 11a-position in progesterone hydroxylation [61]. In another work, docking studies of
CYP106A2 indicated that A243S mutation in the binding pocket could enable a new hydrogen
bond to the carbonyl oxygen at position 21 and stabilize a corresponding conformation to
facilitate 6b hydroxylation, which was further confirmed by experimental results [62]. In the
engineered P450BM3, a phenylalanine residue in the substrate channel to the heme iron was
first replaced by smaller hydrophobic amino acids, and then the first-shell amino acids with
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CYP engineering 
Directed evolu�on
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Figure 3. CYP Engineering Methods. CYP engineering methods include directed evolution, rational design, and
terminal modification, each of which are represented by schematic diagrams. Enzyme* represents engineered enzyme by
rational design.
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maximum possibility to directly interact with the substrate were subjected to site mutagenesis
to alter the regio- and stereoselectivity of this enzyme. These efforts enabled P450BM3 variants
to hydroxylate b-cembrenediol at C9-and C10-positions with 100 and 97% regioselectivity,
respectively [63]. Moreover, the potential of unnatural amino acid substitution was investigated
to modulate the activity and selectivity of CYP. Based on the crystal structure of a promiscuous
CYP102A1 variant, 11 sites were selected for substitution with four unnatural amino acids,
which represent diversified aromatic side-chain groups. The resultant variants were observed
with large shifts in regioselectivity in the oxidation of small-molecule drug (S)-ibuprofen methyl
ester and the bulkier natural product (+)-nootkatone [64]. In addition, P450 fingerprinting is a
useful tool for CYP engineering. Using semisynthetic chromogenic probes, the active site
configuration of engineered P450 variants was mapped to generate reliable prediction of
activity–substrate structure relationship, which may provide convenient and effective guidelines
for CYP engineering [65].

Terminal Modification
To avoid insolubility, instability, or total loss of activity in heterologous CYP expression,
modification of the membrane anchor region is commonly required. The N-terminal membrane
anchor region of Rosmarinus officinalis CYP76AH4 was replaced with the leader peptide
MAKKTSSKGK to guarantee effective function in E. coli, and this enzyme was characterized
as a key enzyme in the production of the phenolic diterpenoid ferruginol [66]. To achieve
heterologous biosynthesis of opiates in yeast, the key CYP enzyme SalSyn was engineered to
avoid the misprocessing and to increase the corresponding activity. The N-terminal a helices of
SalSyn were replaced with those of cheilanthifoline synthase, and the chimeric protein was
yeast codon-optimized, which successfully rescued the N-linked glycosylation caused by the
misprocessing of the nascent protein [67].

The electron transfer uncoupling event is often an obstacle for good performance of CYP in
heterologous microorganism hosts (Box 1). To produce protopanaxadiol in S. cerevisiae, the
protopanaxadiol synthase (PPDS) from Panax ginseng was fused with the CPR (ATR1) from
Arabidopsis thaliana. Compared with PPDS and ATR1 coexpression, the fusion enzymes
achieved approximately 4.5-fold increase in catalytic activity and 71.1% improvement in
protopanaxadiol production [68].

Concluding Remarks and Future Perspectives
Discovering CYPs that are predicted to exist, but have not yet been characterized, is crucial but
challenging for efficient terpenoid biosynthesis. Early efforts in CYP discovery focused on gene
deletion, gene silencing, and in vitro enzymatic assays, which heavily rely on genetic manip-
ulations of the native host, high CYP enzyme activity, and the availability of substrates or
precursors. These limitations made the discovery of key CYPs difficult, unpredictable, and
sporadic. Recently, with the aid of multi-omics analysis, hetereologous CYP expression, and
metabolic engineering, the synthetic biology approach has allowed rapid prototyping of CYP
candidates in a genetically tractable host with a much higher success rate. Under this
paradigm, well-characterized elements (e.g., promoter, ribosome binding site) combined with
codon optimization have been adopted for the heterologous expression of CYPs.

As a significant host in synthetic biology, S. cerevisiae offers distinct advantages for CYP
discovery and terpenoid biosynthesis. First, it naturally generates multiple terpenoid precur-
sors via the MVA pathway, which may save extensive effort in metabolically engineering a host
strain. Second, its post-translational modification system and endoplasmic reticulum may
support the expression of membrane-bound eukaryotic CYPs. Third, its native CYPs are less

Outstanding Questions
Are E. coli and S. cerevisiae the best
heterologous hosts for terpenoid dis-
covery and production? Does a model
plant platform offer distinct advan-
tages for studying terpenoid biosyn-
thesis, particularly terpenoids of plant
origin?

What are the potential challenges for
simultaneous overexpression of multi-
ple CYPs in a heterologous host?

What are the exact working conditions
for native CYPs? Is a subcellular com-
partment vital for CYP activity? Is it
possible to develop a tunable subcel-
lular compartment to enhance CYP
activity?

How to develop a generally applicable
method for high-throughput screening
of CYPs?

For a particular target CYP activity, is it
better to find a novel enzyme from a
native host? Or is it much faster to
engineer a novel CYP to obtain the
desired activity?
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likely to interfere with the discovery of exogenous CYPs, because there are only a few native
CYPs in S. cerevisiae and their functions have been well characterized. In addition to
S. cerevisiae, expression of plant-derived CYPs in heterologous hosts with higher evolution-
ary affinity, such as in Aspergillus, A. thaliana, and tobacco, is a promising alternative. These
hosts may have more mature regulation systems and native compartments to support the
activity of the plant-derived CYPs, but interference from their native CYPs could be a problem.
To biologically synthesize complicated terpenoids, simultaneous overexpression of multiple
CYPs is usually required but challenging in a heterologous host, where those exogenous
CYPs may have severe competition for substrate, CPR, and cofactor. In the future, we believe
that microenvironment engineering approaches [69,70], such as improved electron transfer
coupling, subcellular compartment targeting and engineering, and multi-enzyme complex
engineering, may be required to reconstitute and improve the activity of CYP in a
heterologous host, thereby accelerating CYP discovery and improving terpenoid
biosynthetic efficiency.

Making the potential products of CYP-catalyzed reactions detectable in heterologous hosts is
critical to discover CYPs and subsequently engineer them via synthetic biology approaches.
Beyond the aforementioned strategies, fine-tuning host metabolism to supply enough sub-
strates, cofactors, and partners for CYPs and overcoming potential CYP instability and product
toxicity problems are highly desirable but cumbersome. Recently emerging genome engineer-
ing technologies enable multiplex genome editing with high efficiency and accuracy [71–73].
These primary studies demonstrated the great potential to engineer heterologous hosts both in
extent and depth, which will accelerate CYP discovery and engineering in the near future.

Another important direction to further improve CYP discovery and engineering is to develop
high-throughput screening methods to confirm their activity. Current color- or fluorescence-
based assays are cost effective but difficult to generalize [57], while the most frequently used
HPLC or GC analyses are labor intensive [74,75] (see Outstanding Questions). This problem
can be partially solved by harnessing the great power of robotic automation [76,77] or high-
throughput CYP candidate cloning, expression, and activity screening. A product-based
biosensor would provide much higher throughput in CYP prototyping and engineering, and
it would be an excellent tool in metabolic engineering for improving target terpenoid production.

Combinatorial biosynthesis of terpenoids is another interesting direction in exploring appli-
cations of CYPs beyond their native activities. By harnessing the promiscuity of CYPs,
combined with terpenoid cyclases and empowered by high precursor supply in heterolo-
gous hosts, combinatorial biosynthesis may rapidly generate more terpenoids than nature
offers [78–80].
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