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Yeast metabolic innovations emerged via expanded
metabolic network and gene positive selection
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Abstract

Yeasts are known to have versatile metabolic traits, while how
these metabolic traits have evolved has not been elucidated
systematically. We performed integrative evolution analysis to
investigate how genomic evolution determines trait generation by
reconstructing genome-scale metabolic models (GEMs) for 332
yeasts. These GEMs could comprehensively characterize trait diver-
sity and predict enzyme functionality, thereby signifying that
sequence-level evolution has shaped reaction networks towards
new metabolic functions. Strikingly, using GEMs, we can mechanis-
tically map different evolutionary events, e.g. horizontal gene
transfer and gene duplication, onto relevant subpathways to
explain metabolic plasticity. This demonstrates that gene family
expansion and enzyme promiscuity are prominent mechanisms for
metabolic trait gains, while GEM simulations reveal that additional
factors, such as gene loss from distant pathways, contribute to
trait losses. Furthermore, our analysis could pinpoint to specific
genes and pathways that have been under positive selection and
relevant for the formulation of complex metabolic traits, i.e. ther-
motolerance and the Crabtree effect. Our findings illustrate how
multidimensional evolution in both metabolic network structure
and individual enzymes drives phenotypic variations.
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Introduction

Budding yeasts are unicellular fungi with > 1,000 known species.

They have evolved over a period of 400 million years and are widely

distributed across different ecosystems (Walker, 2009). These yeast

species have numerous traits that are of interest for life science,

making them efficient cell factories to produce valuable products

(Nielsen, 2019) and model organisms to study human diseases

(Poswal & Saini, 2017). Large-scale whole-genome sequencing has

paved ways towards the understanding of metabolic diversity in dif-

ferent yeast species (Peter et al, 2018; Shen et al, 2018), for exam-

ple, by correlating the existence of certain enzyme-encoding genes

with the ability to metabolize a given substrate (Riley et al, 2016;

Opulente et al, 2018). Indeed, connections between genes and meta-

bolic traits in yeast have been mechanistically explored and vali-

dated experimentally (Goncalves et al, 2020). Moreover, it has been

verified that complex traits are always due to the contributions of

multiple genes or mutations (Fox et al, 2015; Krause et al, 2018;

preprint: AlZaben et al, 2021). Subpathway evolution encompassing

the discrete gene evolution events could play a significant role in

gain of new functions for yeasts (Wong & Wolfe, 2005; Goncalves &

Goncalves, 2019). These studies demonstrate that the evolution

from gene to pathways all potentially assure that the strains have

the flexibility to gain new capabilities under specific niches.

While it has been shown that yeast metabolic innovation can be

attributed to gene duplication and enzyme promiscuity (Hittinger &

Carroll, 2007; Opulente et al, 2018), it is unknown to what extent

these two events have contributed to the evolution at the metabolic

network level for gain of functions. Also, besides gene duplication

and enzyme promiscuity, there has not been a systematic investiga-

tion in yeast for how to connect multiple evolutionary events and

characterize general evolutionary trends under the emergence of dif-

ferent metabolic traits. To this end, it is therefore becoming indis-

pensable to apply integrative evolution analysis from gene level,

subpathway level to the system level, where the latter can be repre-

sented by a metabolic model. Genome-scale metabolic modelling

(GEM) is a computational modelling framework that allows cellular

metabolic networks to be examined from a holistic perspective by

predicting cellular phenotypes under the disturbance from geno-

types and external environments (O’Brien et al, 2015). The compar-

ison between predicted cellular traits at large scale with species-

specific GEMs and molecular evolutionary features can help to eluci-

date evolutionary clues for trait diversity (Seif et al, 2020).

However, to date GEMs have only been constructed for 12 yeast
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species (Domenzain et al, 2021), limiting their use in elucidating the

evolution of metabolic trait diversity among yeasts.

Here, we advance the understanding of the evolutionary mecha-

nisms underlying versatile yeast metabolic traits by combining system-

atic evolution analysis with metabolic model reconstruction and

simulation. We firstly reconstructed a pan-genome-scale metabolic

model (pan-GEM), followed by the reconstruction of species-specific

GEMs (ssGEMs) for 332 yeast species and 11 outgroup fungal species,

based on detailed gene function annotation and enriched physiological

studies. The predictive capabilities of ssGEMs were validated against

experimental data. Subsequently, we investigated the main constraints

shaping yeast genomic evolution at both gene- and residue-site levels

by leveraging the GEM simulation and protein-structure-guided func-

tion annotation. Lastly, integrative evolution analysis with GEM simu-

lation was used to investigate how various evolutionary events

mechanistically resulted in gain and loss of functions in specific

lineages. The model prediction and gene selection analyses could iden-

tify some consistent gene features relevant for emergence of complex

traits (like thermotolerance) in yeast. Together, at a system level, our

work highlights that metabolic network expansion through gene dupli-

cation and enzyme promiscuity, and divergent sequence evolution (in-

cluding positive selection) are the main driving forces underlying

metabolic innovations in the yeast subphylum.

Results

Framework of evolution analysis in connecting genome evolution
with trait variance

In order to examine the evolutionary origin of observed trait diver-

sity in yeast, a comprehensive evolution analysis was conducted by

leveraging GEM reconstruction and simulation (Fig 1A). Starting

from the available genomes of 332 yeast species plus 11 outgroup

fungal species (Shen et al, 2018), we collected detailed traits data

for each species (Kurtzman et al, 2011; Hagman et al, 2013; Hagman

& Piskur, 2015; Opulente et al, 2018; Shen et al, 2018), e.g. informa-

tion on substrate utilization, presence of the Crabtree effect and heat

tolerance (Dataset EV1). This allowed association of genome evolu-

tion at multidimensional levels (i.e. subpathway, gene and residue

site) to different cellular traits (Fig 1B and C). Meanwhile, we anno-

tated all of the studied genomes in detail (Appendix Fig S1A-1I),

yielding the ideal input for reconstruction of a yeast pan-GEM and

ssGEMs (Fig 1A, Appendix Fig S1J), as well as systematic analyses

of fungal genome evolution, such as horizontal gene transfer events,

gene family expansion and gene evolution rate estimation (Fig 1B).

Reconstruction ssGEM for 343 fungal species

We firstly reconstructed a yeast pan-GEM using a new pipeline (Mate-

rials and Methods) developed based on the template model strategy

(Machado et al, 2018; Correia & Mahadevan, 2020) (Fig 1, Materials

and Methods). The pan-GEM comprises of metabolic reactions and

enzymes from all 343 fungal species, containing a total of 3,135

metabolites, 4,599 reactions and 3,751 ortholog groups, which there-

fore represents a significant expansion of coverage in metabolism

compared with a prior fungal pan-GEM (Correia & Mahadevan, 2020)

(Appendix Fig S1J). The ssGEMs for all 343 fungal species were

initially generated based on the existence of enzyme orthologs as

annotated in the pan-GEM, then followed by gap-filling

(Appendix Fig S1K, Materials and Methods). Overall, each ssGEMs

contain 3,500–4,000 reactions, and around 1,000 genes for each

(Fig 2A), which are comparable to the previously curated models of

eight intensively studied yeast species (Appendix Fig S2A). The reac-

tions from pan-GEM can be subdivided into 2,080 core and 2,519

accessory ones based on their incidence across all 343 species (Fig 2

B, Materials and Methods). The core reactions are found to be more

likely involved in central metabolism, while accessory ones are more

likely to be involved in degradation pathways and secondary metabo-

lism (Appendix Fig S2B), in agreement with the idea that different

accessory reactions may increase the abilities of individual yeast

species to adapt to their niche (Opulente et al, 2018).

We found that large-scale ssGEM reconstructions can aid in

genome annotations for less-studied species by characterizing previ-

ously unclear substrate utilization pathways. For example, the

erythritol degradation pathway has yet not fully elucidated for most

yeast species (Carly et al, 2018), while two distinct degradation

pathways were recorded in the MetaCyc database (Caspi et al, 2016)

(Appendix Fig S2C). ssGEMs show that erythritol degradation path-

way II is likely more widespread in budding yeasts than erythritol

degradation pathway I, as no hits are found for two essential reac-

tions of the latter pathway. In 85 yeast species, the genomic

evidence for all three enzymes of erythritol degradation pathway II

was detected, consistent with experimental evidence that 68 of these

species are able to utilize erythritol. In contrast, two key enzymes

(EC 2.7.1.215 and 5.1.1.38) in erythritol degradation pathway I are

absent across all studied species (Appendix Fig S2C). Of the remain-

ing 17 species with genomic evidence for erythritol degradation

pathway II, no experimental data were available for 11 species,

while the remaining six species were not able to utilize erythritol

based on trait data (Dataset EV1), which may be caused by, e.g.

transcriptional regulation and low enzymatic activity.

During ssGEM reconstruction, we were also able to curate the reac-

tion existence and gene association in the reference S. cerevisiae model

Yeast8 (Lu et al, 2019). For example, glucosamine-6-phosphate deami-

nase catalyses alpha-D-glucosamine-6-phosphate degradation to fruc-

tose 6-phosphate (reaction r_0465 in pan-GEM, R00765 in KEGG),

which is critical for catabolism of N-acetyl-D-glucosamine and its

related metabolites. This reaction has been present in S. cerevisiae

GEMs ever since the first S. cerevisiae GEM iFF708 from 2003 (Förster

et al, 2003), and likewise in the here used Yeast8 model. However, the

pan-GEM-derived model for this species indicated the absence of this

reaction, which is consistent with absence of in vivo growth on N-

acetyl-D-glucosamine (Flores & Gancedo, 2018). Also, Yeast8 did not

have genes associated with fifth step of CoA synthesis from (R)-

pantothenate, while our model construction pipeline annotated the

gene YGR277C to this reaction, in consistence with the SGD database

annotation (Cherry et al, 2012). As a whole, we refined gene associa-

tions for 14 reactions and expanded the gene coverage by adding 15

genes to our reference model Yeast8 (Dataset EV2).

ssGEM simulations can recapitulate metabolic phenotypes and
evolutionary relationships between yeast species

Using ssGEMs to simulate species-specific substrate utilization, the

average accuracy of model predictions against experimental data was
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above 75% (Fig 2A), reflecting the high quality of the ssGEMs that

we have constructed. In the cases where there are inconsistencies

between model predictions and experimental evidence for substrate

utilization (primarily false positives), we assigned cause of inconsis-

tencies to the potential reactions and corresponding enzymes from

ssGEMs and observed that these partially arise from uncertainties

related to promiscuous enzymes that catalyse multiple reactions in

GEMs (Nam et al, 2012) (Appendix Fig S2D). As an additional test to

benchmark the quality of our ssGEMs, we also used model simula-

tions to predict essential metabolic genes in five species for which

there is experimental evidence of gene essentiality (Dataset EV2).

The average accuracy in metabolic essential gene prediction using

our ssGEMs was over 0.78 for all five species, comparable to that

from the reported ssGEMs (Appendix Fig S3A), again showcasing the

high quality of the ssGEMs constructed in this study.

For each yeast species, we were able to predict their metabolic

flux distributions at maximum growth rate, in minimal medium

under aerobic conditions. This allowed the species-specific biomass,

ATP and amino acid yields to be calculated in silico (Fig 2A and C,

Appendix Fig S2B). The Saccharomycodaceae and Saccharomyc-

etaceae clades have a lower biomass and ATP yield in silico (two-

tailed Wilcoxon rank sum test, P value < 0.001, compared with

Phaffomycetaceae clade), coinciding with the absence of complex I

of the electron transfer chain in these yeasts (Appendix Fig S2B),

which is consistent with the measured biomass yields for yeast

species with and without complex I (Van Hoek et al, 1998; Christen

& Sauer, 2011; Juergens et al, 2020) (Dataset EV2). We then

performed the classification of yeast species based on similarity of

their corresponding ssGEMs, and found that they clustered largely

according to their taxonomic clades (Fig 2D), reflecting that

A C

B

Figure 1. Schematic overview of the framework used in this work to explore how new traits evolved across yeast subphylum by combining systematic
evolution analysis with the metabolic network reconstruction and simulation.

A Reconstruction of 343 species-specific GEMs by leveraging the pan-GEM expanded from the S. cerevisiae GEM Yeast8 (left); and different kinds of sequence-based
evolution analysis conducted in this work (right). During the evolution analysis, the gene ortholog group, protein 3D structure data and functional site annotation
(blue part) were used as the basis for other more in-depth calculations (red part).

B Potential mechanisms underlying trait diversity of yeast. Pathway expansion by distinct enzymes could enable novel substrate utilization. Divergent sequence
evolution could further change the specialty of enzymes by increasing its activity. Lastly, long-term site-wise selection will fix useful mutations to increase the
cellular fitness under specific niches.

C Various trait data collected for yeast species, including the ability to grow on 32 carbon and nitrogen sources, and the complex traits of thermotolerance and Crabtree
effect. All the trait data could be found in Dataset EV1.

ª 2021 The Authors. Molecular Systems Biology 17: e10427 | 2021 3 of 23

Hongzhong Lu et al Molecular Systems Biology



members from the same clade have more similar metabolic network

topology structures. However, clusters of certain clades, particularly

CUG-Ser1 (Fig 2D, dark green) and Phaffomycetaceae (Fig 2D, dark

orange), can be further divided into distinct groups, suggesting that

metabolic diversity presented by ssGEMs might enable further clas-

sification under these clades.

Previously, we have shown that the predictive performance of

traditional GEMs can be improved by incorporating constraints on

enzyme concentrations (Sanchez et al, 2017). Construction of

enzyme-constrained GEMs (ecGEMs) is, however, dependent on the

availability of species-specific enzyme turnover (kcat) data, which

limits its construction for all species. Here, we were able to build

ecGEMs for 14 yeast species with relatively rich kcat data using the

GECKO toolbox (Sanchez et al, 2017) (Fig 2E, Dataset EV2). Given

that ecGEMs can predict the metabolic phenotypes of the 14 yeast

species with very high accuracy (Appendix Fig S3B), these ecGEMs
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were used to calculate in silico flux control coefficient (Stephano-

poulos et al, 1998) (FCC, ratio of change in growth rate to enzyme

activity) for each enzyme. The result illustrated that, with the excep-

tion of ERG13, the FCCs of ortholog enzymes are largely consistent

between different yeast species (Fig 2F).

Gene-specific evolution rates are related to metabolic function
and essentiality

We catalogued about 200,000 gene families from the 343 species.

Removal of spurious sequences and gene families associated with

less than seven species resulted in about 13,000 ortholog groups

(OGs) that were subsequently used in the calculation of gene-

specific ratios of non-synonymous to synonymous nucleotide

changes (dN/dS) (Materials and Methods). It displays that for most

OGs the dN/dS are far smaller than 1, with a median of around 0.25

(Materials and Methods, Fig 3A), which indicates that non-

synonymous mutations in most genes are detrimental and nega-

tively selected during evolution. The dN/dS of metabolic genes are

even lower, with a median of around 0.1, suggesting that mutations

in metabolic enzymes are more likely to be detrimental than muta-

tions in other genes, and therefore subject to a higher pressure for

negative selection. By mapping gene-specific dN/dS onto metabolic

subpathways, we then found that the evolutionary rates of genes in

the TCA cycle are significantly lower than those from other path-

ways (Fig 3B, two-tailed Wilcoxon rank sum test, P value < 0.05).

Notably, based on simulation of the newly reconstructed ecGEMs,

we showed that enzymes with high control over the cell growth rate

(high FCCs) have significantly lower evolutionary rates, suggesting

that these enzymes that play pivotal roles in cell growth are highly

conserved in evolution (Fig 3C).

Similarly, we found that the essentiality of genes is also directly

linked with their evolution rates as essential genes have significantly

lower dN/dS in five yeast species with experimental evidence of

gene essentiality (Fig 3D). Meanwhile, the essential genes were also

shown to be accompanied by higher protein-level conservation

scores and frequency of incidence across the yeast species examined

(Appendix Fig S4B). Based on these observations, we hypothesized

that these evolution-based features could be used to distinguish

essential from non-essential genes in a whole-genome level for a

given species, complementing our capability to predict essential

metabolic enzymes using ssGEMs. To test this hypothesis, we evalu-

ated two machine learning models (Appendix Fig S4A, Materials

and Methods), support vector machines (SVMs) and random forest

(RF), to predict gene essentiality based on sequence features alone,

or using sequence features in combination with gene’s evolution-

based features. Our results verified that the gene essentiality predic-

tion could be substantially improved by integrating evolution-based

features (Fig 3E and F, Appendix Fig S4C and D). We then used the

SVM pipeline to predict essential genes for all remaining 338 fungal

species, and compared the essential metabolic genes predicted by

this machine learning approach and those predicted via metabolic

modelling using ssGEMs. Here, an overall consistency of 66.9% was

achieved (Appendix Fig S4E, Dataset EV3). Together, these predic-

tions provide a valuable resource for further studies in the yeast

research community.

Positive selection at the amino acid level is related to both
function and localization on the protein 3D structure

While mutations in most OGs are negatively selected at the gene

level, we nevertheless screened 862 OGs of high possibility with at

least one positively selected site (or amino acid residue, PSS) (Fig 4

A and B, Appendix Fig S5A, posterior probability > 0.9) and they

are also accompanied by higher evolution rates compared with the

remaining OGs (Appendix Fig S5B). Mapping these OGs with PSSs

onto metabolic pathways annotated based on KEGG database, the

genes with PSSs were mainly detected in the MAPK signalling path-

way, Biosynthesis of secondary metabolites and Ribosome

(Appendix Fig S5C), among which it is significantly enriched in

“Ribosome” in hypergeometric test (P value = 0.0017). We also

found part of genes from some core metabolic pathways, including

central carbon and nitrogen metabolic pathways (Fig 4C and

Appendix Fig S5C), consistent with previous reports in primate

◀ Figure 2. Yeast genomic and metabolic diversity can be reflected by GEM reconstruction, comparison and simulation.

A Metabolic variance of 332 yeast species from 12 major clades revealed by model reconstruction and simulation. The tips in the phylogenetic tree represent 12 major
clades in the subphylum classification for 332 yeast species plus 11 fungal species as outgroup, according to Shen et al (2018), and this species classification is used
throughout analyses. Substrate accuracy specifies the accuracy for substrate utilization prediction against experimental data (Dataset EV1). Biomass yield was
estimated by simulation on minimal media with 1 mmol glucose as input. In each boxplot, the central band and boxes represent the median and interquartile values,
respectively, and the whiskers extend up to 1.5 times the interquartile range beyond the box range. During calculation, each group takes the maximal number of
yeast species it covers, i.e. larger than three different species except for clade of Alloascoideaceae (one species) and clade of Sporopachydermia (two species). Each
point represents a distinct species. The number of species in each clade for each box plot is shown in the left bar plot. Outliers beyond the whisker are plotted as
single points.

B Profiles of pan, core (existing in all sampled species) and accessory (existing in part of sampled species) reactions as the numbers of analysed yeast and fungal species
increase from 1 to 343.

C Ranges of in silico theoretical maximum production yields of each amino acid across yeast species. The blue zone represents the distribution of predicted maximum
yields from all yeast species in this study. The unit for the yield is mol amino acid per mol glucose.

D t-SNE clustering analysis of yeast species based on the existence of reactions in ssGEMs.
E Number of enzymes within different classes (all, isoenzymes, promiscuous and involved in enzyme complexes) from ecGEM reconstruction for 14 yeast species. The

horizontal labels in the radar map represent the number of different kinds of enzymes encompassed in ecGEMs.
F Heatmap of flux control coefficients calculated by ecGEMs for 14 yeast species. The x-axis refers to yeast enzymes, while the y-axis indicates yeast species. dbr:

Dekkera bruxellensis; esi: Eremothecium sinecaudum; kla: Kluyveromyces lactis; kmx: Kluyveromyces marxianus; ppa: Komagataella pastoris; lfe: Lachancea fermentati;
lth: Lachancea thermotolerans; ncs: Naumovozyma castellii; seu: Saccharomyces eubayanus; spo: Schizosaccharomyces pombe; tbl: Tetrapisispora blattae; tpf:
Tetrapisispora phaffii; zro: Zygosaccharomyces rouxii; kdo: yHMPu5000034710 Kluyveromyces dobzhanskii.

Source data are available online for this figure.
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evolution (Daub et al, 2017), and hinting that this pattern of site-

wise positive selection occurs across a wide range of evolutionary

domains.

At the amino acid residue level, a wide range of site-wise dN/dS

from 0 to > 3.0 was observed, indicating that diverse selection pres-

sures may be acting on mutations of specific amino acid residues

(Appendix Fig S5D). To examine this, we classified each amino acid

residue into 32 functional categories (Appendix Fig S5E) based on

the functional annotation of the S. cerevisiae S288c proteome.

Notably, the functional categories of particular importance to meta-

bolic enzymes, e.g. active sites and binding sites, have significantly

lower dN/dS compared with other functional categories, signifying

that the catalytic capabilities of enzymes are highly conserved in

evolution (Fig 4D). Focusing on the evolutionary trend at these

important sites, we found that most of them are extremely

conserved as 2,440 of 3,370 residue sites are kept the same across

species in 1,364 proteins with reference from S. cerevisiae (Fig 4E).

For example, all five functionally important sites (H9, R60, E87, K98

and H182) of phosphoglycerate mutase 1 (YKL152C) are invariable

across all yeast species. Also, we could find signs of divergent

evolution at some important sites; for example, for the putative 6-

phosphofructo-2-kinase (YLR345W) in 337 fungal species, the active

site at D173 in 23 species mainly from Metschnikowia genus was

substituted by glutamic acid, while the reference and alternative

residues are both belong to ionic amino acids.

We then mapped the PSSs and fast-evolved sites (site-wise dN/

dS > 1) onto about 3,700 reference protein 3D structures from S.

cerevisiae S288c (Fig 4A, Appendix Fig S6, Materials and Methods),
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Figure 3. Gene evolution rate is constrained by its protein function in the metabolic network.

A Gene-specific dN/dS distribution for all OGs, metabolic OGs in pan-GEM and OGs connected with core reactions across all ssGEMs.
B Distribution in gene-specific dN/dS from the several main typical pathways annotated in ssGEMs.
C Correlation analysis between the average dN/dS and their relevant flux control coefficients as calculated from ecGEMs of three typical yeast species with growth as

the objective function.
D Gene-specific dN/dS for both essential genes and non-essential genes across several typical yeast species. sce: S. cerevisiae, spo: S. pombe, cal: C. albicans, yli: Y.

lipolytica, ppa: K. pastoris.
E Improved essential gene prediction on training dataset using support vector machine (SVM) algorithm by adding evolution-based parameters. The dashed line

represents diagonal line with an AUC of 0.5, which means random guessing.
F Top features in SVM contributing to the essential gene prediction. Kmer-TGA and Kmer-GAA refer to specific 3-nucleotide sequence fragments, features with lower

importance are not shown. Feature importance scores were calculated by the chi-square test.

Data information: The statistical analysis in (B–D) is based on the two-tailed Wilcoxon rank sum test. P value < 0.05 (*), P value < 0.01 (**) and P value < 0.001 (***). In
each boxplot, the central band and boxes represent the median and interquartile dN/dS, respectively, and the whiskers extend up to 1.5 times the interquartile range
beyond the box range. During calculation, each group takes the maximal number of ortholog genes it covers, i.e. larger than three for each group. Each point represents
a distinct ortholog gene. Outliers beyond the whisker are plotted as single points.
Source data are available online for this figure.
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to examine the spatial distribution of these sites. As a whole, it exhi-

bits that positively selected and/or fast-evolved sites are spatially

distant from functionally important sites (i.e. active sites and

binding sites) as calculated based on protein 3D structures, with

most fast-evolved sites being > 10 angstrom away from protein

active sites or binding sites (Fig 4F). These positively selected and/
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or fast-evolved sites also tend to be spatially diffuse, as most of

them do not form clusters when mapped onto protein 3D structures.

Significant clusters encompassing the above sites with gap

frequency cut-off of ≤ 0.3 were detected in only 16 proteins (Fig 4G,

P value < 0.05), several of which are relevant to the cellular stress

response (Dataset EV4). The spatial distribution of these significant

clusters on the protein 3D structures is again found to be distant

from active sites and binding sites, as exemplified by 3D structure of

YBL099W (Fig 4H). Taken together, these results confirm that

amino acid residues in metabolic enzymes are subject to different

selection pressures depending on both their function and localiza-

tion in the protein 3D structures (Echave et al, 2016).

Evolutionary mechanisms underlying substrate utilization
diversity in yeast

As ssGEMs were able to associate metabolic traits with genomic and

site-specific diversity, we could further leverage these models to

investigate how the trait diversity of yeast has arisen, by mapping dif-

ferent evolutionary events onto catabolic metabolic pathways from

ssGEMs. Firstly, we compared the substrate utilization of each

species to the inferred traits of the budding yeast common ancestor

(BYCA) (Shen et al, 2018), and catalogued the gains and losses of

these metabolic traits (Fig 5A). We next conducted more detailed

evolution analysis at gene levels, i.e. gene family expansion (contrac-

tion) and horizontal gene transfer (HGT) analyses. Then, for each

change in substrate utilization relative to the BYCA, we determined

whether this was brought about by expansion of an existing gene

family (Fig 5A, Appendix Fig S7A and B), HGT (Fig 5B and C,

Appendix Fig S7C, Dataset EV5) or a promiscuous enzyme that

changed its substrate specificity (Materials and Methods). The data

suggested that HGT contributes relatively little to trait gains or losses

(Fig 5A); however, many genes evolving from HGT events were

transporters or extracellular substrate degradation enzymes (Fig 5B),

which likely plays a role in enlarging the substrate utility of yeast.

The dominant source of HGT is from other fungi (Fig 5C) suggesting

a frequent gene flow among the fungal species. There is obvious vari-

ability in HGT events related to substrate degradation among various

clades (Fig 5A). For the Wickerhamiella/Starmerella (W/S clade) and

its close relatives, e.g. Lipomycetaceae, Trigonopsidaceae, Dipodas-

caceae/ Trichomonascaceae, there are more HGT events due to the

fact that the large majority of species in these clades are ecologically

associated with other fungal species or eukaryotes (Goncalves et al,

2020), while there are very few or zero HGT events related to

substrate degradation in the CUG group and its relatives (e.g. CUG-

Ser1, CUG-Ser2, Phaffomycetaceae), supporting that genetic code

alteration can act as a barrier to HGT (Richards et al, 2011).

For trait gains, expansion of existing gene families and increased

substrate specificity of promiscuous enzymes appear to be the main

driving factors (Fig 5D and F). It initially hints that the Saccharomyc-

etaceae clade has a higher number of expanded genes and promiscu-

ous enzymes, which can be associated with a wider substrate

utilization profile compared with the Saccharomycodaceae clade. The

duplications of promiscuous enzymes following divergent sequence

evolution are frequently observed in yeast. As one typical example,

maltase is able to degrade maltose, turanose, maltotriose and sucrose

(Brown et al, 2010). We found that the responsible gene had at least

one duplication in 77 yeast species, among which 74 could utilize

maltose and 69 utilize sucrose (Dataset EV6). With the enzyme func-

tional annotation from S. cerevisiae S288c, it shows that three key

residue sites (active site: D214, E276; site: D349) of maltase are

highly conserved in each duplication, maintaining the same in about

96% of all ortholog gene members. In some species, divergent

sequence evolution at key residue sites can still be observed. For

instance, in Nadsonia fulvescens var. elongata, one of these key

residue sites was mutated in one duplication (from D349 to E349)

while remaining unchanged in another duplication. Such a divergent

sequence evolution in promiscuous enzyme may determine the speci-

ficity of enzyme in catalysing various substrates. More interestingly,

in six yeast species with only one duplication of maltase, gaps were

found at these three key residue sites, coincidently with the trait loss

in maltose utilization in these species (Dataset EV6).

◀ Figure 4. Evolution analysis in codon (amino acid site) level based on protein 3D structures.

A Schematic pipeline to calculate the site-wise evolution rate and map the fast-evolved or positively selected sites onto the protein 3D structures, to enable the
mutation cluster analysis.

B Number of genes with positively selected sites across 343 fungal species as calculated by site model using three different methodologies (Materials and Methods).
The “prune” indicates whether paralog genes were automatically removed from gene families, to yield just a single gene copy for each yeast species.

C Distribution of genes with positively selected sites in different metabolic subpathways. Results for more pathways are shown in Appendix Fig S5.
D Site-wise dN/dS for each functional category of residue sites defined in the UniProt database (The UniProt Consortium, 2017). For comparison, only dN/dS between 0

and 1 are plotted here. Results for more functional categories are shown in Appendix Fig S5. P value is from two-tailed Wilcoxon rank sum test. In each boxplot, the
central band and boxes represent the median and interquartile dN/dS, respectively, and the whiskers extend up to 1.5 times the interquartile range beyond the box
range. During calculation, each group takes the maximal number of residue sites it covers; i.e., at least 199 residues site from group of “Site” and the number is much
larger in other groups. Each point represents a distinct residue site. Outliers beyond the whisker are plotted as single points.

E Statistical analysis in count of unique amino acid residues at each functionally important site (including active site, binding site, metal binding site and site
according to UniProt database) across 343 fungal species.

F Density plot of spatial distances between the highly conserved sites (e.g. active sites, binding sites) and the fast-evolved sites (including the positively selected sites),
across 343 fungal species. The dashed line represents adjacent distance at 10�A.

G Effects of the cut-off in gap ratio during the multiple sequence alignment on the number of proteins detected with significant clusters (P value < 0.05) consisting of
the fast-evolved sites (dN/dS > 1).

H Example of CLUMPS analysis to obtain the significant clusters consisting of fast-evolved sites based on protein 3D structures. Shown is subunit alpha of F1F0-ATP
synthase, coded by gene YBL099W and part of ortholog group OG1533. The homology 3D structure data for YBL099W were downloaded from the SWISS-model
database (Waterhouse et al, 2018). The coordinate of binding site is from the UniProt database (The UniProt Consortium, 2017) and the coordinate of active site is
from the SGD database (Cherry et al, 2012), respectively. Fast-evolved sites at positions 489, 492, 499 and 536 are away from the conserved binding and active sites.

Source data are available online for this figure.
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We further simulated substrate utilization using ssGEMs to

examine these trait loss events at a holistic level. In simulations, we

firstly defined those reactions that always coexist with specific traits

as highly correlated reactions (consistency > 0.83, sensitivity

> 0.92) (Fig 5H, Materials and Methods). Such highly correlated

reactions could be identified for the utilization of 14 substrates out

of 32 substrates tested, and loss of these highly correlated reactions

plays a large role in trait loss (Fig 5E). The random loss of non-

highly correlated reactions has a similar effect, which indicates that

loss of metabolic traits is not always linked with loss of the same

reactions in different yeast species. Our model simulations also

identified a small number of cases where, although all enzymes and
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reactions are present in the specific pathway responsible for substrate

assimilation, an enzyme/reaction in a distantly related pathway (here

defined as “downstream pathway”) is lost, resulting in loss of

substrate utilization (Fig 5E). In Fig 5G, we present ethanol utiliza-

tion as an example: several species in the genus Hanseniaspora seem-

ingly contain all enzymes necessary for ethanol utilization (from

ethanol to acetyl-CoA to oxaloacetate; Fig 5G), yet these species

cannot catabolize ethanol. We propose that this arises from a missing

reaction in gluconeogenesis, which converts oxaloacetate to phospho-

enolpyruvate, catalysed by the enzyme oxaloacetate carboxylase

(EC4.1.1.49), which is absent in these specific Hanseniaspora species

(Fig 5G, orange arrow and text). For the same reason, the model

simulations show that these species are not able to utilize succinate

or citrate as substrates, while ability to utilize glycerol utilization is

unaffected (Fig 5G). These in silico predictions are in good agreement

with the experimentally determined substrate utilization capabilities

(Dataset EV1) (Kurtzman et al, 2011).

Evolution of complex phenotypes, Crabtree effect and
thermotolerance

While substrate utilization is often a relatively simple trait that can

readily be understood from evolution of the required catabolic path-

ways, it is more challenging to elucidate the evolutionary mecha-

nisms underlying complex traits such as the Crabtree effect and

thermotolerance (Caspeta et al, 2014) in yeast. Here, integrative

analysis from metabolic simulation and gene selection analysis were

conducted to find consistent clues underlying the emergence of

complex traits in yeast. In our gene selection analysis, the so-called

“branch-site” model that can deduce whether the positive selection

happened on a proportion of species or branches with specific traits

(Appendix Fig S5A, Materials and Methods) was used.

As first case of complex traits, we examined the Crabtree effect to

test our procedure. Here, we found that there is a combined positive

selection for three genes in the EMP pathway (FBA1, PGK, PYK, P value

< 0.05), and one gene in oxidative phosphorylation (ATP1, P value <
0.05), in four independent lineages of Crabtree-positive yeasts with and

without whole-genome duplication (WGD) having the Crabtree effect

(Fig 6A). The positive selection of PGK and PYK in Crabtree-positive

yeast species has been reported in two Dekkera yeasts (Guo et al, 2016)

without WGD by comparing them with five closely Crabtree-negative

species, increasing the confidence in the accuracy of our analysis. Inter-

estingly, it has recently been reported that increased PYK activity

through one missense mutant shifts S. pombe from respiration towards

fermentation (Kamrad et al, 2020), while attenuation of PYK activity

was important for S. cerevisiae to acquire a Crabtree-negative pheno-

type (Yu, Zhou, et al, 2018). Additionally, simulations of a simplified

core metabolic model (Chen & Nielsen, 2019) and the ecGEM of S. cere-

visiae both allude that increased efficiencies of FBA1, PGK and PYK

potentially play a role in the redistribution of fluxes towards fermenta-

tion (Conant & Wolfe, 2007); thus, the divergent sequence evolution in

these genes may be relevant for the Crabtree effect in some yeast

species (Fig 6A, Appendix Fig S8). By comparison, we found no

evidence of positive selection for any transcriptional factors (TFs) from

these four independent lineages of Crabtree-positive species.

As the second example, the polygenetic and multiscale features

relevant for thermotolerance formation were explored in a similar

way. In our work, thermotolerance is mainly observed in four inde-

pendent clades: Dipodascaceae/Trichomonascaceae; Pichiaceae; CUG-

Ser1; and Saccharomycetaceae (Dataset EV1), although the

◀ Figure 5. Probing evolutionary mechanisms underlying the trait diversity in substrate utilization for 332 yeast species, through model simulation and
systematic evolution analysis.

A Numbers of traits, gain and loss of function in substrate utilization, in relation to the budding yeast common ancestor (BYCA), in addition to numbers of horizontal
gene transfer (HGT) events, expansions of existing gene families and promiscuous enzymes, all related to substrate utilization traits across 12 main clades of the
yeast subphylum. In each boxplot, the central band and boxes represent the median and interquartile values, respectively, and the whiskers extend up to 1.5 times
the interquartile range beyond the box range. During calculation, each group takes the maximal number of yeast species it covers, i.e. larger than three different
species except for clade of Alloascoideaceae (one species) and clade of Sporopachydermia (two species). Each point represents a distinct species. Outliers beyond the
whisker are plotted as single points.

B Classification of genes gained through HGT related to substrate utilization based on their function and compartmental annotation.
C Origin of HGT genes (i.e. donor organisms) as identified from 332 yeast species.
D Ratios of different evolutionary events related to gain of function in substrate utilization.
E Ratios of evolutionary events related to loss of function in substrate utilization. Downstream pathway is defined here as cases where all enzymes and reactions from

the direct substrate utilization pathway are present in the organism, but specific reactions in distantly related pathway (i.e. “downstream pathway”) are absent,
thereby preventing successful substrate utilization.

F Correlation analysis among number of total traits (No. of traits), gain of traits (Gain), loss of traits (Loss), HGT events (HGT), expanded gene families (Exp) and
promiscuous enzyme (Prom). *** means P value < 0.001 in the correlation t-test analysis.

G Example of a loss of substrate utilization trait caused by a defect in a downstream pathway. The reaction catalysed by EC4.1.1.49 (phosphoenolpyruvate
carboxykinase, in orange) is essential to utilization of ethanol and citrate as substrates, even though it is not directly involved in their degradation. Meanwhile,
utilization of glycerol would be unaffected by the absence of EC4.1.1.49. All potential substrates are shown in blue, dotted arrows indicate multiple reaction steps,
and arrowhead indicates reaction direction and reversibility.

H Example of highly correlated and non-highly correlated reactions, defined as those reaction that do, or do not, exist together with the substrate utilization
phenotype. Highly correlated reactions are defined as consistency > 0.83, sensitivity > 0.92 (Materials and Methods). Reactions R01431, R01896 and R01639 are
catalysed by D-xylose reductase, D-xylulose reductase and xylulokinase, respectively, while these enzymes might also be involved in utilization of other sugars, e.g.
arabinose. The presence of these reactions in the model does not correlate well with the xylose utilization phenotype and is not highly correlated. While S. cerevisiae
has all three genes, it cannot grow on xylose. Meanwhile, galactose utilization is highly correlated to reactions R01092, R00955 and R00291, catalysed by
galactokinase, galactose-1-phosphate uridylyltransferase and UDP-glucose 4-epimerase, respectively. Reaction identifiers are from KEGG. Exp stands for the
experimental phenotype, and Model stands for model simulated phenotype. ppa: Komagataella pastoris; ago: Eremothecium gossypii; cgr: Candida glabrata; caur:
Candida auris; kaf: Kazachstania africana; kla: Kluyveromyces lactis; kmx: Kluyveromyces marxianus; lth: Lachancea thermotolerans; ndi: Naumovozyma dairenensis; sce:
Saccharomyces cerevisiae; tbl: Tetrapisispora blattae; tpf: Tetrapisispora phaffii; tdl: Torulaspora delbrueckii; cal: Candida albicans; yli: Yarrowia lipolytica.

Source data are available online for this figure.
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distribution across species within these four clades is not uniform

(Fig 6B). We identified 141 genes to be positively selected in relation

to thermotolerance, occurring in at least three independent clades

and at least 10 species in each clade (P value < 0.05) (Fig 6B). The

141 genes are more conserved across yeast species among the tested

OGs, and 140 genes have orthologs in S. cerevisiae (Appendix Fig

S9A). Pathway enrichment analysis shows these genes are enriched

in several cellular processes that have previously been shown to

contribute to heat tolerance (Puig-Castellvi et al, 2018; Muhlhofer

et al, 2019), including fatty acid synthesis (P value = 0.011), biosyn-

thesis of amino acids (P value < 0.0001) and TCA cycle (P value <
0.0001) (Appendix Fig S9B, Dataset EV7). These genes were also

significantly enriched for GO terms including “translation” (P value <
0.0001), “ribosome” (P value = 0.019) and “protein folding” (P value
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Figure 6. Mechanisms underlying the formation of complex traits revealed by integrative evolution with aid of metabolic simulations.

A Evolution mechanisms of the Crabtree effect based on the integrated evolution analysis and model simulation. Crabtree is distributed across clades, but dominant in
Saccharomycetaceae (left). Three top positively selected genes (middle), fructose-bisphosphate aldolase (FBA), phosphoglycerate kinase (PGK) and pyruvate kinase (PYK)
were identified from the intersection of two independent calculations using the “branch-site” model. Potential correlation between the increased kcat of enzymes
encoded by the three selected genes and ethanol secretion was evaluated based on a reference metabolic model from Chen and Nielsen (2019) (right). Abbreviations:
G6P, glucose 6-phosphate; 6PG, 6-phosphogluconate; F6P, fructose 6-phosphate; FBP, fructose-1,6-bisphosphate; GA3P, glyceraldehyde-3-phosphate; 1,3PG, 1,3-
bisphosphoglycerate; G3P, glycerate 3-phosphate; PEP, phosphoenolpyruvate; PYR, pyruvate; ACAI, acetaldehyde; TCA cycle, tricarboxylic acid cycle.

B Global cellular response to heat tolerance revealed by “branch-site” model analysis and metabolic model simulation. The detailed phylogenetic tree represents the
distribution of thermotolerant species. The heatmap displays the number of positively selected ortholog genes when using different number of clades and species as
the cut-offs (Materials and Methods). The top positively selected genes in the blue circle are the intersection of two independent calculations using the “branch-site”
model. The key enzymes in the red circle that could restore the cellular normal growth were obtained from Li et al (2021).

Source data are available online for this figure.
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= 0.028). Furthermore, 42 of the positively selected genes were dif-

ferentially expressed (up- or downregulated, P value < 0.05) when

comparing their protein levels in S. cerevisiae cultivated at 30°C and

38°C in chemostat experiments (Lahtvee et al, 2017) (Appendix Fig

S9C). More importantly, a recent experiment by transferring genes

from a thermotolerant yeast species—Ogataea polymorpha—to S.

cerevisiae verified that numerous genes (about 60 genes were tested)

can contribute to thermotolerance of yeast and these genes are signif-

icantly enriched in GO term of “translation” and “ribosome” (Seike

et al, 2021), partially consistent with the result here.

Additionally, we identified 35 specific mutations from the above

22 positively selected gene that mainly exist in thermotolerant

species (Appendix Fig S9D, Materials and Methods). Mapping these

mutations onto reference protein 3D structures revealed that the

largest proportion of the mutations occurs in alpha-helices and

interface of 3D structures (Appendix Fig S9D), which might be a

kind of convergent evolution for growth at high temperatures. As an

example, most thermotolerant yeast species contain two mutations

in the protein disulphide isomerase (PDI1, YCL043C), at positions

351 and 355; both are confined by alpha-helices of the thioredoxin-

like fold of the protein near the active site. However, the functionali-

ties of these mutations and their correlations with thermotolerance

need more in-depth molecular studies.

We further examined the role of enzymes in thermotolerance

using the S. cerevisiae metabolic model etcYeast7.6, which includes

the optimum and melting temperatures for each enzyme (Li et al,

2021). Simulations with this model revealed that, at a prohibitory

growth temperature of > 40°C, growth can be restored by modifying

a combination of 82 enzymes, indicating that the optimum or melt-

ing temperatures of these enzymes are not optimized for thermotol-

erance in S. cerevisiae. Of those 82 enzymes, 29 were identified as

positively selected in thermotolerant yeast species in our evolution

analysis (Fig 6B), further lending confidence to our analyses. These

enzymes are significantly enriched in aminoacyl-tRNA biosynthesis

(P value = 0.013), biosynthesis of amino acids (P value < 0.0001)

and EMP pathway (P value = 0.0057).

Discussion

Cellular fitness originates from the integrative effect of multidimen-

sional evolution and optimization (Conrad et al, 2010), while the

metabolic network structure and the prediction from genome-scale

metabolic models can recapitulate the evolutionary relationships

between different species in a system level. Here, for the first time,

we reconstructed the ssGEMs for 332 yeast species in large scale

(Fig 1), which could systematically characterize the evolution of

diverse metabolic traits in yeast (Fig 2). It illustrates that the iterative

update in yeast ssGEM could facilitate genome annotations and iden-

tify previously unclear metabolic pathways for specific substrate

utilization in several species (Appendix Fig S2C), which thus

provides a solid basis to explore the multiscale evolution of metabolic

traits in the yeast subphylum. Further, the evolution rate calculations

at both gene- and residue-site levels reveal that the species from yeast

subphylum exhibit negative selection on the gene level (Fig 3A),

whereas the positive selection can occur on specific residue sites to

shape the enzyme evolution. Combining systems-level metabolic

simulations and gene-level evolution rate calculations, we discover

that the evolution rates of enzymes are modulated by both metabolic

function and gene essentiality. Interestingly, the 3D protein structure

mapping shows that these positively and fast-evolving amino acid

residues are spatially distant from functionally important sites such

as active sites or substrate binding sites within an enzyme (Fig 4F).

These findings demonstrate that though the evolution is multidimen-

sional and dynamic, the metabolic functions reflected by ssGEMs and

protein 3D structures still potentially shape the evolution at both gene

and amino acid residue level.

Metabolic model simulation could enhance evolution analysis in

delineating the evolutionary mechanisms underlying the metabolic

trait diversity. As for the substrate utilization by yeast, previous studies

of small numbers of yeast species have implicated gene duplication

events, enzyme promiscuity and/or potential HGT events (Goncalves

et al, 2018; Milner et al, 2019) in the evolution of fungal metabolic

diversity. Here, using the largest number of yeast metabolic networks

to date, our findings suggest that metabolic trait gains are primarily

driven by gene family expansions and enzyme promiscuity (Fig 5F).

This indicates an inherent flexibility in yeast metabolism, which has

allowed yeast species to evolve new traits to adapt to changes in their

niche. Our findings also indicate that HGT events have contributed in

only a few cases to expand substrate utilization in certain yeast species

(Fig 5D), which is in accordance with some previous studies that HGT

has a low frequency in budding yeasts (Marcet-Houben & Gabald�on,

2010; Goncalves et al, 2018; Shen et al, 2018). This is in direct contrast

to studies in E. coli, where HGT was found to be the major event driv-

ing metabolic innovations (Pang & Lercher, 2019). Nonetheless, the

transporters gained from HGT events in certain yeast species could

leverage existing metabolic networks to expand the utilization of addi-

tional substrates. Consistent with reductive evolution in genome, loss

of function is another decisive factor to determine trait diversity of

yeast species, which is highly coupled with the loss in crucial reactions

(Fig 5E). On the contrary, metabolic trait loss can be also due to the

internal structure of metabolic networks including gaps in downstream

pathways in specific yeast lineages (Fig 5G). To the best of our knowl-

edge, this is the first work to investigate the yeast metabolic innova-

tions in large scale via combining genome-scale metabolic models

(GEMs) and evolution analysis. Further studies are needed to fully

explore the detailed mechanisms by which reductive evolution has

shaped the evolution of metabolic traits in yeast.

Besides substrate utilizations in yeast, we used an integrative

evolution analysis with metabolic model simulation to provide a

holistic examination of the evolution of complex traits. Our result

hints that the emergence of the Crabtree effect seems to be accompa-

nied by positive selection (or at least sequence divergence) at genes

from the EMP pathway in specific yeast lineages (Fig 6A), consistent

with several previous studies in Dekkera yeasts (Guo et al, 2016), S.

pombe (Kamrad et al, 2020) and S. cerevisiae (Yu, Zhou, et al,

2018). However, from current evidences, it is not determined

whether the specific gene selection contributes to the emergence of

Crabtree effect or the evolution of Crabtree effect could accelerate

the related gene selection, and, to some extent, these two events

may possibly intertwine with each other during the long-term evolu-

tion. Note that other evolutionary events are correlated to the Crab-

tree effect, such as rewiring of the transcriptional regulation

network (Ata et al, 2018) and the loss of complex I (Dashko et al,

2014), indicating that multiple evolutionary events intertwined

along the formation (or fitness) of complex traits in yeasts.
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As reported, there exist multiple evolutionary trajectories for

fungi to acquire the fitness of growth under high temperature (Mat-

toon et al, 2021). With integrative analysis of large-scale genomics

and trait data in yeast, we could infer amounts of potential gene

features relevant for the formation of thermotolerance at a systems

level. As a result, 141 positively selected genes were found to be

important for the evolution of thermotolerance of yeast (Fig 6B),

which is partially in agreement with experimental and in silico

evidence of thermotolerance in S. cerevisiae (Li et al, 2021; Seike

et al, 2021). Function enrichment analysis of these positively

selected genes could help to find some interesting subpathways or

GO terms correlated with thermotolerance. Combining experimental

data by transferring genes from thermotolerant yeast to non-

thermotolerant yeast (Seike et al, 2021) initially showed that evolu-

tion of genes from subpathways underlying amino acid and protein

synthesis may be a consistent clue underlying thermotolerance in

yeast from comparative analysis of those multilayer datasets,

whereas, to date, systematic experimental evidences are still lacking

to verify the mechanistic correlation between the top positively

selected genes (or unique mutations) and growth fitness under

higher temperature. Thus, it is anticipated that a similar gene trans-

fer between yeasts with distinct fitness can be designed for these top

positively selected gene in future studies to further evaluate the

polygenetic and/or pathway-level evolution for the emergence of

thermotolerance in yeast.

In summary, we have used comprehensive evolution analysis

combined with ssGEM simulation to examine the evolution of diverse

metabolic traits in yeast. We envision that this strategy can be widely

applied in future studies to investigate the evolutionary mechanisms

of additional fungal traits, such as pathogenicity (Rom�an et al, 2007).

Materials and Methods

Reagents and Tools table

Reagent/Resource Reference or Source Identifier or Catalog Number

Experimental Models

343 fungal species https://doi.org/10.1016/j.cell.2018.10.023 (Shen et al, 2018) N/A

Software

MAFFT v7.455 https://mafft.cbrc.jp/alignment/software/ (Katoh et al, 2005) N/A

trimAl v1.2 http://trimal.cgenomics.org/ (Capella-Guti�errez et al, 2009) N/A

BLAST+ ftp://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/LATEST N/A

Biopython https://biopython.org/ N/A

Pfam v32.0 ftp://ftp.ebi.ac.uk/pub/databases/Pfam/releases/Pfam32.0 N/A

RAVEN v2 https://github.com/SysBioChalmers/RAVEN (Wang et al, 2018) N/A

COBRA v3.0 https://github.com/opencobra/cobratoolbox/ (Heirendt et al, 2019) N/A

TBLASTN ftp://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/LATEST N/A

gapseq v1.1 https://github.com/jotech/gapseq (Zimmermann et al, 2021) N/A

GECKO v2.0 https://github.com/SysBioChalmers/GECKO (Sanchez et al, 2017) N/A

MACSE v2.03 https://bioweb.supagro.inra.fr/macse/ (Ranwez et al, 2011) N/A

PhyloTreePruner v1.0 https://sourceforge.net/projects/phylotreepruner (Kocot et al, 2013) N/A

FastTree v2.1 http://www.microbesonline.org/fasttree/ (Price et al, 2010) N/A

GUIDANCE v2.0 http://guidance.tau.ac.il/ (Sela et al, 2015) N/A

PAML v4.7 http://abacus.gene.ucl.ac.uk/software/paml.html (Yang, 2007) N/A

HyPhy v2.5 https://github.com/veg/hyphy (Kosakovsky Pond et al, 2020) N/A

ETE v3 http://etetoolkit.org/ (Huerta-Cepas et al, 2016) N/A

IQ-TREE v1.6.12 http://www.iqtree.org/ (Nguyen et al, 2015) N/A

CAF�E v4.2.1 https://github.com/hahnlab/CAFE (Han et al, 2013) N/A

scikit-learn v0.22.1 https://scikit-learn.org/stable/whats_new/v0.22.html N/A

Methods and Protocols

Module 1. GEM reconstruction and analysis
Genomic and phenotypic data collection for yeast species

Firstly, 332 sequenced genomes from the yeast subphylum and their

related annotation were obtained from a previous study (Shen et al,

2018). Meanwhile, 11 fungal species (Arthrobotrys oligospora, Asper-

gillus nidulans, Botrytis cinereal, Coccidioides immitis, Fusarium

graminearum, Neurospora crassa, Saitoella complicate, Sclerotinia

sclerotiorum, Stagonospora nodorum, Xylona heveae and Schizosac-

charomyces pombe) were selected as outgroup, and their genomes

and related annotation were obtained from the JGI database
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according to the reported species ID from Shen et al (2018). All

genes from these 343 fungal species were clustered into about

220,000 ortholog groups using OrthoMCL v2.0 (Li et al, 2003; Shen

et al, 2018). The orthologs, coding sequences (CDS) and protein

identifiers provided in the various datasets were mapped using

custom Python scripts to gene identifiers and their respective

protein sequences, while inconsistencies in identifier mapping were

resolved by querying their corresponding sequences using reciprocal

best BLAST hit (Moreno-Hagelsieb & Latimer, 2008).

The phylogenetic information of all yeast species studied in this

work is obtained from a previous study (Shen et al, 2018), where all

species were divided into 12 main clades according to their phyloge-

netic distance. Their respective phenome data were systematically

curated from literature in this work (Dataset EV1). Firstly, four main

key phenotypes, i.e. “oleaginous”, “ethanol-producing”, “patho-

genic” and “thermotolerant”, were assigned for each species, by

searching for literature containing the species name and phenotype-

related keywords, e.g. “lipid”, “oil”, “oleaginous” (Dataset EV2).

Secondly, the substrate utilization profiles for 32 different substrates

by 329 out of 332 yeast species were collected and evaluated from

Kurtzman et al (2011) and Shen et al (2018).

Representative gene sequence for each ortholog group

To annotate the function of each of the 220,000 ortholog groups

(OGs) defined from the 343 fungal genomes, representative genes

were carefully selected from each OG according to two criteria: (i) if

an OG contained S. cerevisiae sequences, then the S. cerevisiae

sequence was selected as representative due to the S. cerevisiae

genome annotation is the most mature and of high quality among

all yeast species (if the OG contained multiple S. cerevisiae

sequences, then only one S. cerevisiae sequence was selected as

representative); and (ii) if an OG does not contain S. cerevisiae

sequences, then we selected the longest sequence that has no

unspecified (“X”) amino acid. Resultingly, 5,096 OGs have a

member gene from S. cerevisiae S288c as representative sequence.

The genes belonging to the same OG were assumed to have the

shared function as the selected representative gene.

Reconstruction of pan-GEM as the template model for all studied

species

All modelling procedures were performed using COBRA toolbox v

3.0 (Heirendt et al, 2019) in MATLAB, unless noted otherwise. The

KEGG web tool (Kanehisa & Goto, 2000), EggNOG web tool

(Huerta-Cepas et al, 2019) and RAVEN 2 toolbox (Wang et al, 2018)

were used to annotate the collection of representative genes (from

the pan-genome) and identify reactions that did not already exist in

the template model Yeast8 (https://github.com/SysBioChalmers/

yeast-GEM) (Lu et al, 2019). The protein FASTA file of representa-

tive genes was used to query the KEGG and EggNOG web services.

In KEGG, the SBH (single-directional best hit) method with default

parameters was used, while for EggNOG, the HMMER method with

the default parameters was used. In EggNOG, each protein was

mapped onto KEGG Ontology (KO) identifiers and BiGG reaction

identifiers, while in KEGG, each protein was given a unique KO

identifier. Following this, new KO identifiers were mapped to KEGG

reactions based on KO-reaction identifier mapping. Lastly, the pan-

genome was annotated by reconstruction of a draft pan-model from

RAVEN using both the KEGG- and MetaCyc-based functions

(getKEGGModelForOrganism and getMetaCycModelForOrganism).

The protein FASTA file of representative genes was used as input,

while for KEGG, the pretrained HMM collection “euk90_kegg87”

was used, and for MetaCyc, the pidentity was set at 55% and

bitscore was set at 110.

All reactions annotated from the four approaches—KEGG web

(Kanehisa & Goto, 2000), EggNOG (Huerta-Cepas et al, 2019),

RAVEN-KEGG and RAVEN-MetaCyc (Wang et al, 2018)—mentioned

above were combined and compared with the reactions from

template model Yeast8 (Appendix Fig S1I). Three criteria were

applied for evaluating reactions to be included in the pan-GEM: (i)

unbalanced, reactions with generic reactants (e.g. “sugar”) and

reactions containing “n” in the stoichiometry were discarded; (ii)

new reactions that occurred in a previously reported pan-fungal

GEM (Correia & Mahadevan, 2020) were included; and (iii) reac-

tions with more than 2 dead-end metabolites were initially filtered

out. For the new reactions, HMM-based gene associations from

KEGG, EggNOG and RAVEN-KEGG were prioritized in comparison

with the approach of homology search used by RAVEN-MetaCyc.

After collecting 562 new reactions together with their gene associa-

tions, they were added to Yeast8 to generate the pan-GEM, now

containing reactions from all studied species.

It is feasible that two different OGs are reflecting enzymes with

the same catalytic activity, but due to sufficient sequence dissimilar-

ity, they were divided into separate OGs. If one of the OGs has a S.

cerevisiae member, then members of that OG will have already been

added to the pan-GEM. To also capture the other non-S. cerevisiae

groups of OGs, homologous pairs between representative OG genes

and all genes from Yeast8 were searched using reciprocal best

BLAST with pidentity as 70% (Appendix Fig S1G). 1,201 homolo-

gous pairs were determined and were updated in the gene associa-

tions of the pan-GEM according to the following rule: homolog gene

C would be updated to all gene associations of its reference gene A:

(i) the original gene association “A or B” would be changed to “A or

B or C”, and (ii) the gene association “A and B” would be changed

to “(A and B) or (C and B)”.

Generation of yeast species-specific GEMs (ssGEMs)

For each yeast species, a copy of pan-GEM was created and then

manipulated by removing non-existing genes and reactions using

the pan-gene existence matrix that was generated from the ortholog

group annotation by OrthoMCL. Based on gene existence informa-

tion, if more than 50% subunits of an enzyme complex were

present, then the complex was considered to be active in that

species, and the corresponding reaction was therefore kept in the

ssGEM, while its gene association was updated to remove the miss-

ing subunits. For reactions associated with isozymes, if one enzyme

among them is missing, then the reaction was also kept in the

ssGEM, while its gene association was again updated to remove the

missing gene. Generally, reactions without gene association rules in

the pan-GEM, such as spontaneous reactions and exchange reac-

tions derived from Yeast8, were kept in each ssGEM. In these initial

pan-GEM derived ssGEM, the representative gene identifiers were

updated to the species-specific gene identifiers, while the representa-

tive identifiers were saved in the SBML file of each model to facili-

tate further analysis. In a species, multiple homolog genes may exist

for the same representative gene. The rule for updating homologs in

the ssGEMs is the same as for the homolog update for pan-GEM
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mentioned above. Homologs would be updated as “or” relation in

the GPR rule expression. As for complexes with multiple subunits,

the complex would be copied and updated.

Biomass definition for ssGEMs

The various individual components (e.g. all amino acids, nucleo-

tides, ribonucleotides) that make up biomass in pan-GEM were

assumed to be comparable to S. cerevisiae, and therefore, the

biomass definition was borrowed from Yeast8, while cofactors were

removed as the detailed gene annotation for cofactor synthesis path-

ways in most non-model yeast species is not complete. In the pipe-

line of ssGEM generation, the biomass pseudoreactions from pan-

GEM were transferred with adjustments. Since all yeast and fungal

species in this work were classified into four main phenotype

groups (i.e. normal, heat-tolerant, oleaginous and pathogenic),

macrobiomass compositions in aspects of lipid, carbon, protein,

DNA and RNA for those four groups were referred to the biomass

compositions in representative species (with published GEMs,

Dataset EV2) from the above four main phenotype groups. Also,

proportions of macrobiomass components such as protein, lipid,

DNA and RNA were scaled accordingly.

Gap-filling

RAVEN was used to construct draft models for each individual

species. With the species protein FASTA file as input, two draft

models were generated for each species, based on KEGG and

MetaCyc, respectively, and served as reference for later gap-filling of

the ssGEMs if needed. These models are referred to as RAVEN draft

GEM (KEGG or MetaCyc) to distinguish from the ssGEMs. Next,

gap-filling was adopted to guarantee that each ssGEM could support

cellular growth in minimal growth media (free uptake of ammonia,

oxygen, phosphate, sulphate and a constrained uptake of glucose).

For auxotrophic species, including Eremothecium coryli and Tetrapi-

sispora blattae (Hagman et al, 2013), additional auxotrophic

compounds were added to the minimal media during simulation (L-

lysine for E. coryli and complex media for T. blattae). For ssGEMs

that could not achieve growth under above conditions, gap-filling

was utilized to identify and include missing reactions.

In detail, to include reactions that are essential for biomass

synthesis, it was first checked which of the biomass components

could not be synthesized, and canonical pathways from MetaCyc

were used to identify the missing reactions. The single-species

RAVEN draft GEMs (KEGG and MetaCyc) were subsequently

queried, and if both RAVEN draft GEMs contained the missing reac-

tions, then these reactions and their related gene associations would

be added into the ssGEM. This approach ensured that those

enzymes with gene sequences too deviant from the representative

genes in the OGs could still be captured and included in the model.

The pan-GEM was furthermore updated accordingly to encompass

the new changes. Only gaps that could be filled with gene-

associated reactions from the RAVEN draft GEMs were resolved

with this approach. Complementarily, automatic gap-filling was

performed for the remaining gaps to enable growth. The “fillGaps”

function from RAVEN toolbox (Wang et al, 2018) was used to deter-

mine the missing reactions where the pan-GEM acted as a universal

database of possible reactions. For this, “useModelConstraints” was

set as true and the lower bound of the biomass synthesis reaction

was set at > 0. This method detects the minimal number of

reactions that should be added from the pan-GEM to satisfy the in

silico growth in each ssGEM. After these two gap-filling steps

(Appendix Fig S1K), all ssGEMs were able to predict growth.

Model quality improvement based on substrate utilization evidence

Experimental evidence on substrate utilization by yeast species was

used to evaluate model predictions and iteratively improve model

quality. When testing whether a yeast species could utilize specific

substrate in silico, the ssGEMs were constrained under minimal

media and replacing with the corresponding carbon or nitrogen

source. Growth on different carbon and nitrogen substrates was

simulated by allowing exchange of the corresponding substrate with

a rate of −10 mmol gDW
−1 h−1, and threshold of growth rate as

10−6 h−1. Literature-based candidate reactions to enable substrate

utilization were manually collected for gap-filling (Dataset EV5).

TBLASTN was used to predict the existence of the corresponding

enzymes (and the associated reactions) in 332 yeast genomes based

on the existing protein sequences in KEGG, which are connected

with those candidate reactions. In TBLASTN analysis, the strict cut-

off was set as: bitscore > 50, E-values < 1e-10, coverage > 70% and

identity > 30%. In order to increase accuracy, the protein sequences

from fungal species were prioritized; otherwise, 30 randomly

selected sequences were used as reference for each enzyme.

TBLASTN was further used to conduct gene mining to determine

which pathways exist in related fungi. For example, erythritol degra-

dation has two alternative pathways. Most sequences for enzymes

in erythritol degradation I were retrieved from KEGG, except for

sequence “Q2YIQ3” (Brucella abortus strain 2308) for eryC (EC

5.1.3.38), which was extracted from UniProt based on annotation in

MetaCyc due to the missing KO annotation for eryC in KEGG. Due

to the missing reactions for erythritol degradation II in KEGG and

MetaCyc, the reported proteins “YALI0F01606g” and “YALI0F01650p”

from Y. lipolytica (Carly & Fickers, 2018) were used as query

sequences, which were obtained from UniProt. As for lysine degra-

dation pathway, gap-filling reactions were directly added to the

corresponding ssGEMs and pan-GEM based on literature (Zabriskie

& Jackson, 2000), due to missing KO and gene annotation in KEGG

and MetaCyc. After the above curation, substrate utilization predic-

tion accuracy (equation 1) was calculated for each species according

to:

Accuracy ¼ TP þ TN

TP þ TN þ FP þ FN
(1)

where TP, TN, FP and FN denote true positive, true negative, false

positive and false negative, respectively.

Model validation with reported essential gene and key evolution traits

To further evaluate model quality, the functional characteristics of

ssGEMs were investigated by gene essentiality analysis. Experimen-

tal evidence on essential genes for five yeast species, P. pastoris, S.

cerevisiae, S. pombe, Y. lipolytica and C. albicans, was collected

from literature and the Database of Essential Genes (DEG) (Luo

et al, 2014) (Dataset EV2). In silico gene essentiality was predicted

by enumerating gene knockout for each ssGEM and simulating

growth using flux balance analysis (FBA) (Orth et al, 2010), where a

simulated maximal growth rate < 10−6 h−1 was classified as no

growth and the corresponding gene can be regarded as an essential
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gene (Heavner & Price, 2015). The ssGEMs could further be used to

characterize the loss of respiratory chain complex I (Hagman et al,

2013) (Appendix Fig S2B) in corresponding species by examining

the existence of corresponding reactions in ssGEMs.

Definition of high-correlated reactions contributed to substrate

utilization

Correlation between enzyme/reaction existence and substrate

uptake was quantified as accuracy and sensitivity (equations 2 and

3). As it is widely known that the ability of yeast species to utilize

galactose is highly correlated with the existence of GAL1, GAL7 and

GAL10 (Opulente et al, 2018) in their genomes, we repurposed the

corresponding accuracy (0.83) and sensitivity (0.92) for Gal1 (or

Gal7/Gal10) and used the similar approaches to define high-

correlated reactions contributing to the normal utilization of the

remaining substrates used in this work.

Accuracy ¼ TP þ TN

TP þ TN þ FP þ FN
(2)

Sensitivity ¼ TP

TP þ FN
(3)

Definition of gain of new traits in substrate utilization occurred in each

yeast species

Phenotypes (e.g. substrates utilization) for each species were

compared with their ancestral budding yeast common ancestor

(BYCA) phenotype to calculate the number of gain/loss events in the

substrate utilization. The posterior probability of ancestral state in

BYCA for each metabolic trait was collected from a previous study

(Shen et al, 2018). Here, a posterior probability of 0.85 was used as a

cut-off for the existence of a phenotype in BYCA, while a probability

lower than 0.15 was interpreted as non-existence. Through this,

among 32 traits in substrate utilization which could be connected

with the metabolites in ssGEMs, 5 traits were classified as gain of

new function in utilizing carbon (2-Keto-D-gluconate, D-arabinose,

D-ribose, methanol) and nitrogen (nitrite) sources (Fig 5A).

Transporter annotation for substrate utilization

Annotation of transporter reactions were conducted for each species

by combining the pan-GEM reconstruction-derived annotations and

additional direct BLAST search for each species. For the latter,

BLAST was performed using the function—“gapseq find-transport”

in gapseq (Zimmermann et al, 2021) for protein sequences of each

species against the Transporter Classification Database (Saier et al,

2016) with default parameters (bitscore ≥ 200 and coverage ≥
75%). Among the 32 substrates identified in the previous section,

18 were annotated to the potential transporters in this pipeline.

Those annotations were later used to identify genes acquired via

horizontal gene transfer (HGT).

Model similarity analysis for ssGEMs

To compare similarity between all ssGEMs, the “compareMulti-

pleModel” function from RAVEN toolbox was used. Binary reaction

existence matrix was collected to calculate Hamming distance.

Three-dimensional t-Distributed Stochastic Neighbour Embedding

(t-SNE) was used to visualize the classification of ssGEMs (Fig 2D).

ecModels reconstruction and flux control coefficient analysis

In order to incorporate enzyme constraints into ssGEMs, the GECKO

toolbox v1.3.5 was used to generate ecModels in accord with the

procedure in our previous work (Sanchez et al, 2017). Maximum

growth rates for each species were collected from literature (Hag-

man et al, 2013) (Dataset EV2) and were used to curate growth-

limiting kcat parameters in an iterative procedure until the ecModels

reached the provided experimental values. Additionally, experimen-

tal ethanol production rates from the literature were incorporated as

constraints prior to the iterative automated curation of kcat values,

in order to obtain kinetic profiles that reflect the observed pheno-

types for each of these species.

In order to investigate the limitations imposed by individual

enzyme activities on a given reaction flux, flux control coefficients can

be calculated by inducing small perturbations for each enzyme in the

model according to the following definition (Nilsson & Nielsen, 2016):

FCCi ¼ kijcat
v∗j

 !
∗

v∗j � v j

1:001kijcat � kijcat

 !
(4)

where vj represents the original flux for reaction j in a reference flux

distribution; kijcat is the turnover number for the enzyme i in reaction

j; and v∗j is the resulting flux for reaction j after inducing a perturba-

tion of 0.1% in the activity of enzyme i. For the calculation of flux

control coefficients over the growth rate of ecModels, the biomass

exchange pseudoreaction (cellular growth) was taken as vj, assum-

ing YPD medium with D-glucose as a carbon source for all cases.

In silico evaluating the influences of enzyme parameters on the

Crabtree effect

The effects of selected enzyme activities on phenotypic traits related

to the Crabtree effect in S. cerevisiae (biomass yield, ethanol produc-

tion yield and critical dilution rate) were quantitatively assessed using

ecYeast8 (Lu et al, 2019). The biomass yield on fermentative condi-

tions and ethanol production yield were both estimated from enzyme-

constrained parsimonious flux balance analysis (ec-pFBA) (Österberg

et al, 2021), using maximization of biomass production as an initial

objective function, following by minimization of the total protein pool

utilization, subject to maximum biomass production, in order to

obtain biologically meaningful fluxes. Both yields were normalized by

gram of consumed glucose. This procedure was repeated for several

values of perturbed kcat values for the selected enzymes, ranging from

onefold to 10-fold of the original value (Appendix Fig S8F). Addition-

ally, a reduced proteome-constrained model that contains reactions of

energy metabolism of S. cerevisiae (Chen & Nielsen, 2019) was also

used to explore how the perturbed kcat values of the selected enzymes

influence exchange fluxes. To do so, the default model was employed

to predict exchange fluxes at maximal growth as a control, and then,

the protein cost of the related reaction was decreased at a time from

the default value (100%) to 10% (it means the corresponding kcat
increased from onefold to 10-fold). The resulting exchange fluxes

were compared with those of the control.

Module 2. Evolution analysis at gene level
Ortholog quality analysis

For the pan-GEM and ssGEM reconstructions, the original ortholog

groups (OG) were used directly. Contrastingly, for the following
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evolution analysis, the OGs firstly underwent systematic quality

analysis to remove those OGs with too many paralog genes or

containing too few yeast species, as such cases would impede

further analysis. Quality analysis was performed through the follow-

ing steps.

1. For OGs with at least seven species, the relevant CDS

sequences were collected in a new FASTA file, thereby keeping

15,461 OGs as most groups contained less than seven species.

2. All CDS within an OG were translated into protein sequences

using translateNT2AA from MACSE v2.03 (Ranwez et al, 2011)

and subsequently aligned to the other sequences within the

OG using MAFFT v7.455 (Katoh et al, 2005) in auto mode.

3. Gene trees were built by firstly trimming the aligned protein

sequences using trimAl v1.2 (Capella-Guti�errez et al, 2009)

with the gap cut-off set to 0.7. Proteins that were trimmed to

less than 50% of the aligned length were filtered out. Spurious

sequences were removed by again using trimAl, now with

resoverlap at 0.75 and seqoverlap at 0.75. After the above

initial filtration, 13,652 OGs with species number ≥ 7, paralogs

per single species ≤ 5, ratio of sequences over species ≤ 1.5

and remaining residues for each protein ≥ 30 were retained.

This collection of 13,652 OGs was either used directly in the

following evolution analysis, while for particular analysis (e.g.

gene-level dN/dS calculation), the OGs were further reduced to

remove paralog genes, yielding single-copy OGs. For this, a

tree pruner strategy was followed where gene trees for the

13,652 OGs were built using FastTree v2.1 (Price et al, 2010)

with the Le-Gascuel 2008 model, and the gene trees were

subsequently pruned using PhyloTreePruner v1.0 (Kocot et al,

2013) with bootstrap cut-off at 0.95 and picking the longest

sequence for a given out, retaining 13,220 single-copy OGs.

4. Protein alignments within each OG were used to align the

corresponding CDS sequences using reportGapsAA2NT from

MACSE and GUIDANCE v2.0 (Sela et al, 2015). The CDS align-

ment and quality analyses from GUIDANCE were used in the

following site model and “branch-site” model analyses, and

the CDS alignments from MACSE were used to connect the

site-wise dN/dS with the coordinates of residues from protein

3D structures. Occasional stop codons found in the aligned

CDS sequences obtained from MACSE were replaced with gaps.

dN/dS calculation

The gene-level dN/dS of paired gene sequences from the same OGs

were calculated with yn00 from PAML v4.7 (Yang, 2007), using the

13,220 single-copy OGs as input. Median values were used for

comparison between different OGs (Fig 3A), while any codon with

gaps across species was removed automatically by yn00. The gene-

level dN/dS values were extracted from the PAML output file. To

reduce bias in the statistical analysis, the dN/dS for gene pairs with dS

≥ 3 or dS ≤ 0.005 were removed. Note that though with higher effi-

ciency, the yn00 is of lower quality and accuracy than the M models.

Positively selected sites were identified in the aligned CDS

sequences across yeast species using HyPhy v2.5 (Kosakovsky Pond

et al, 2020) and PAML v4.7 (Yang, 2007) (Appendix Fig S5A), where

for the former, both the FEL (Kosakovsky Pond & Frost, 2005) and

FUBAR (Murrell et al, 2013) (Materials and Methods) were used

with their default parameters. As calculations using the site model

of PAML take much longer, especially for large OGs, primarily

results from HyPhy were considered in this work. HyPhy output

was processed with phyphy v0.4.3 (https://github.com/sjspielman/

phyphy) to extract the site information. Sites with dN/dS > 1 and

posterior probabilities either larger than 0.9 in FUBAR or with

corrected P value smaller than 0.1 in FEL were regarded as under

positive selection.

Branch-site model for selected gene analysis

To connect the positively selected genes with traits in specific

lineages of yeast species, aBSREL (Smith et al, 2015) (adaptive

Branch-Site Random Effects Likelihood) from HyPhy was adopted to

conduct positive selection analysis using the “branch-site” model

(Appendix Fig S5A). To detect positively selected genes, species

with specific traits, i.e. Crabtree effect and heat tolerance, and

monophyletic groups of the related species (nodes) (Weber et al,

2020) were labelled as the “Foreground” in each gene tree, while

the remaining were labelled as the “Background”. The gene tree

approach is used in this work as only a subset of OGs have at least

one corresponding sequence for each of the species from the species

tree. To improve calculation efficiency, six species were randomly

selected from each main clade that do not have the specific trait. If a

main clade had over six species with the specific trait, then six

species were randomly selected from that clade. Also, if a main

clade contained species with and without the specific trait at the

same time, then the species without the specific trait was removed

from the “branch-site” model analysis. If multiple paralog genes

were found for the same species, then the gene with longest protein

after quality analysis was selected as representative in the analysis.

Using such a unified procedure, nearly all species with the “heat

tolerance” trait could be labelled as “Foreground” (test) branch.

Through computation and comparison, it was found that the taxon-

omy sampling strategy used here, to some extent, could balance the

accuracy and efficiency in large-scale evolution analysis as this is

very computation-intensive. For the “Crabtree effect” trait, only OGs

from the core metabolic pathways and transcript factors were used

in the calculation as they are expected to be highly related to the

emergence of the Crabtree effect. In all “branch-site” model analy-

sis, OGs with at least three species with the trait and at least three

species without the trait were used in the calculation. Meanwhile, to

reduce the bias from random sampling, for each trait studied in this

work, two independent calculations were carried out, while the

intersection of the positively selected genes from the two calcula-

tions was used in the final analysis. Additional calculation was

conducted as the null hypothesis analysis to test the above proce-

dure. In this null hypothesis analysis, 25 species were randomly

selected from the 76 Crabtree-negative species as the foreground

branches in the “branch-site” model analysis. It initially shows that

the positive selection based on the normal “branch-site” model anal-

ysis is obviously different from the result with the null hypothesis

analysis (Dataset EV7).

Gene tree reconstruction in positive gene (site) selection analysis

For each OG after quality analysis (see Ortholog quality analysis),

gene trees were reconstructed using FastTree v2.1 (Price et al, 2010)

with the Le-Gascuel 2008 model for the above site model and

“branch-site” model analysis. As a whole, over 13,000 gene trees

were reconstructed, which can be further visualized using iTOL v5
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(Letunic & Bork, 2019) and ggtree v1.14.6 (Yu, Lam, et al, 2018).

Note that though with higher efficiency, FastTree v2.1 (Price et al,

2010) is of lower accuracy in gene tree inference.

Horizontal gene transfer analysis

To determine horizontal gene transfer (HGT) events from non-

fungal organisms to yeast, BLASTP was run against the NCBI non-

redundant (nr) protein sequence database by taking a collection of

proteins related to substrate utilization and transporters as input

(Camacho et al, 2009). BLAST hits were parsed to retrieve associ-

ated taxonomic information using ETE v3 (Huerta-Cepas et al,

2016). Alien Index (AI) scores (Gladyshev et al, 2008) were calcu-

lated to predict horizontal gene transfer events with the formula

AI ¼ ln bbhGþ 1∗10�200
� �� lnðbbhOþ 1∗10�200Þ (5)

where bbhG is the E-value of the best BLAST hit to a species

within the group lineage (fungi) but outside of the subphylum

(Saccharomycotina), and bbhO is the E-value of the best BLAST hit

to a species outside of the group lineage (fungi).

To further remove contamination results of HGT, the percentage

of species from outside of the fungi lineage (out_pct) was deter-

mined according to the BLAST hits. As a result, those 32 and 33

genes with AI ≥ 45 and out_pct ≥ 90% were grouped as potential

HGT candidates from outside of fungi in terms of substrates utiliza-

tion and transporters, respectively (Gladyshev et al, 2008; Marcet-

Houben & Gabald�on, 2010) (Dataset EV5).

To identify HGT events from closely related organisms (fungi) to

yeast, a combination of BLAST similarity searches and comparative

similarity index (HGT index) was investigated to predict HGT events

(Crisp et al, 2015). Firstly, for each gene associated with substrate

utilization, BLASTP against NCBI nr protein database and taxonomy

determination were conducted as described above. Then, several

steps were carried out to screen potential genes acquired via HGT

from fungi as follows:

1. Genes with a best hit in another fungi lineage (excluding the

recipient Saccharomycotina) and a bitscore ≥ 100 were defined

by the first round of preliminary screening;

2. The percentage of species from other fungi (inside of fungi,

outside of Ascomycota) was determined, if this was ≥ 90%,

then the gene was retained;

3. HGT index was calculated as the bitscore of the best hit in

other fungi divided by the bitscore of the best hit in recipient

(Saccharomycotina), where all genes with HGT index ≥ 50%

were retained, as this indicated that these genes match well to

other fungi genes. These parameter thresholds were based on

previous reports (Marcet-Houben & Gabald�on, 2010; Crisp

et al, 2015; Shen et al, 2018). Finally, 153 and 78 genes were

found as putative genes obtained by HGT from fungi in associ-

ation with substrate utilization and transporters, respectively.

To ensure that the high-throughput HGT identification approach

yielded accurate predictions, a phylogenetic analysis strategy was

adopted for further manual inspection. For each candidate gene,

homologs were selected according to the top 300 BLAST hits to each

query sequence. These homologs were then aligned with MAFFT

v7.310 (Katoh et al, 2005) using default settings for multiple

sequence alignment. Poorly aligned regions were removed with

trimAl (Capella-Guti�errez et al, 2009) using the “-automated1”

option. Subsequently, phylogenetic trees were built using IQ-TREE

v1.6.12 (Nguyen et al, 2015) with 1,000 ultrafast bootstrapping

replicates (Minh et al, 2013). Each tree was rooted at the midpoint

using a customized script by combining R packages ape v5.4.1 and

phangorn v2.5.5. Finally, the resulting phylogenies were visualized

using iTOL v5 (Letunic & Bork, 2019), through manually checking

them one by one to assess the mode of transmission of each gene,

102 and 61 potential gene hits were identified in relation to

substrate utilization and transporters, respectively (Dataset EV5).

Gene family expansion and contraction analysis

Gene family expansion and contraction across yeast species were

investigated using CAF�E v4.2.1 (Han et al, 2013) with default

parameters. The software CAF�E uses a birth and death process to

model the evolution of gene family sizes by a phylogenetic tree, in

which gene family sizes were obtained by a customized script based

on OG. For each gene family, CAF�E generated a family-wide P value

along specific species or branches, with a significant P value

(< 0.05) indicating a possible gene family expansion and contrac-

tion event. More gene families are prone to contraction compared

with expansion across species (Appendix Fig S7A and B), consistent

with an earlier report that reductive evolution is the major mode

causing evolutionary diversification (Shen et al, 2018).

Conservation score calculation for each residue site of proteins

Residue-site conservation scores were calculated using a reported

method based on the Jensen–Shannon divergence (JSD) (Capra &

Singh, 2007), by which the gap cut-off is set at 0.3 and js_divergence

is used as a conservation estimation method. To compare the

residue conservation score from different algorithms, the ConSurf

Server (Ashkenazy et al, 2016) was adopted for several examples. A

linear correlation was found between the JSD and ConSurf results

(R2 = 0.83), and the JSD method was selected for conservation score

calculation for all ortholog proteins.

Functional enrichment analysis of positively selected genes

Once genes with at least one positively selected residue site were

obtained, KO annotations of the representative genes were used to

connect all positively selected genes with KEGG subpathways

(Kanehisa & Goto, 2000). Subsequently, frequencies of subpathways

of all positively selected genes were calculated to obtain the top

subpathways with relatively more positively selected genes

(Appendix Fig S5C). For positively selected genes from “branch-

site” model analysis relevant for the trait of heat tolerance, as 140 of

141 OGs have a member gene from S. cerevisiae S288c, the gene IDs

from S. cerevisiae S288c were directly used in the function enrich-

ment analysis with aid of DAVID (Huang et al, 2007).

Unique mutation analysis related to heat tolerance

Potential unique mutations related to heat tolerance were identified

by selecting and aligning protein sequences from yeast species with

and without heat tolerance. From this, the distribution of residues at

each coordinate from the two groups of yeast species was calcu-

lated. At the first glance, taking the strict definition that unique

mutations are defined as a residue that only occurred in yeast

species with heat tolerance, no related residues could be identified.
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To widen the search, specific residues that occurred in over 80% of

yeast species with heat tolerance were defined as conserved and

highly correlated with heat tolerance. Subsequently, all residues that

occurred in over 20% of the yeast species without heat tolerance

were defined as the reference residue set. In the last step, if a

conserved residue occurred in yeast species with heat tolerance but

not within the reference residues set, then this residue was regarded

as a potential unique mutation, which could possibly contribute to

the formation of heat tolerance. In order to map the unique muta-

tion onto protein 3D structure, only the mutation having the corre-

sponding reference from S. cerevisiae S288c was selected in all the

relevant analysis.

Module 3. Evolution analysis at residue-site level with aid of
protein 3D structure
Protein 3D structure collection and quality analysis

For all proteins from S. cerevisiae S288c, the homology-modelled

protein structure files (PDB) built by the SWISS-model database

(Waterhouse et al, 2018) and the experimentally determined protein

structures stored in PDB files at RCSB protein data bank (Rose et al,

2017) were collected. In quality analysis, the homology PDBs with

QMEAN < −4 for proteins without experimental PDB files were fil-

tered out according to the description from SWISS-model database

(Waterhouse et al, 2018). In total, 3,567 S. cerevisiae proteins have the

related homology PDB files after the quality analysis during this step

(Appendix Fig S6A–C). For the experimental (instead of modelled)

PDBs, the correct chain in the 3D structure was extracted using SIFTS

(Velankar et al, 2013). Next, BLAST was used to align the protein

sequences in the PDB files with the reference protein sequences from

S. cerevisiae S288c, and PDB files with pidentity at 100% and no gaps

were kept. As a result, experimental PDB files for 918 proteins can be

used in the following analysis, while, if all experimental PDBs for one

protein were filtered out, the homology PDB files will be used. After

all the quality analysis, the custom python scripts were applied to

calculate the distance matrix of paired C-atoms for all the PDB files

(Meyer et al, 2016), which will be used as the following cluster analy-

sis based on the protein structure information.

Functional annotation of residues sites with UniProt

Annotations of functional site for S. cerevisiae S288c were collected

from UniProt (The UniProt Consortium, 2017) (https://www.

uniprot.org/help/sequence_annotation) and used as reference to

study how functional sites evolve. The protein secondary structures

were predicted using SCRATCH (Cheng et al, 2005). The detailed

phosphorylation sites and interface prediction of protein 3D struc-

tures were acquired from Lanz et al (2021). This involved annotat-

ing amino acid residues with sites of various types including active

sites, metal binding sites, other binding sites, interfaces of protein

complex, secondary structure and phosphorylation site to be used in

further analysis (Fig 4D).

CLUMPS analysis of fast-evolved sites and positively selected sites for

a protein

Positively selected sites were clustered based on protein 3D struc-

tures. Firstly, the positively selected site for one (unpruned) OG

from FUBAR (posterior probability > 0.9) was used, and the relative

coordinates of these positively selected sites on the representative

proteins were obtained through coordinate mapping. With the

relative coordinates of the positively selected site and the structure

distance matrix, it was calculated whether these positively selected

sites were significantly enriched in specific zones within the protein

3D structure using CLUMPS analysis (Kamburov et al, 2015).

Briefly, in original CLUMPS analysis, a P value is calculated based

on a null distribution by randomly distributing a mutated residue

within protein 3D structures. In this work, the mutated residue is

replaced by the positively selected site.

Some of the OGs have less than 2 strong positively selected sites,

which is not enough for the above enrichment analysis based on

protein 3D structures, and would thereby omit many fast-evolved

sites (dN/dS > 1). To prevent this, the fast-evolved sites were used as

input for the CLUMPS analysis, to further explore how fast-evolved

sites distributed spatially within the protein 3D structures (Fig 4A).

Module 4. Machine learning for the improved essential gene
prediction in genome scale
Sequence data collection used for machine learning

Reported essential gene datasets from five yeast species (P. pastoris,

S. cerevisiae, S. pombe, Y. lipolytica and C. albicans) were collected

and used to build machine learning models for the prediction of

essential genes (Dataset EV2). The gene and protein sequence

FASTA files used for S. cerevisiae, C. albicans and S. pombe were

acquired from SGD (Cherry et al, 2012), CGD (Skrzypek et al, 2018)

and PomBase (Lock et al, 2019) database, respectively, while the

gene and protein data for P. pastoris and Y. lipolytica were all

obtained from the NCBI RefSeq database (Pruitt et al, 2007).

Feature calculation for prediction of essential gene using machine

learning model

Gene essentiality can be predicted by machine learning based on

sequence-derived properties (Ning et al, 2014). For sequence

features, Dinucleotide composition (DNC) and codon frequency

have been recognized as important sequence features for essential

gene prediction (Ning et al, 2014; Lin et al, 2019), where Kmer is

characterized as the codon frequencies can be represented as Kmer

of k neighbouring nucleic acids for a specific DNA sequence (Chen

et al, 2020). Therefore, for the collected essential gene datasets from

five yeast species, the sequence features here were characterized by

DNC and Kmer (k = 3), which can be calculated by:

DNC r, sð Þ ¼ Nrs

N � 1
r, s ∈ A, C, G, Tf g (6)

Kmer tð Þ ¼ N ðtÞ
N

t ∈ AAA, AAC, AAG,⋯, TTTf g (7)

where Nrs is the number of combinations of any two nucleic acid r

and s, N (t) is the number of type t, and N is the length of a

nucleotide sequence.

In addition to the above features that were directly extracted

from gene sequences, evolution-based features, including protein

conservation score, dN/dS, number of gene occurrence across

species and average paralog number, were calculated for each gene

based on its ortholog information (Appendix Fig S4A). The protein

conservation score is defined as the average conservation scores of

all residues for one OG. The average paralog number is defined as

the number of sequences contained in one OG divided by the total

number of unique species in that OG.
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Machine learning (ML) workflow for the prediction of essential gene

To establish the ML models, different approaches were adopted to

divide all curated datasets into training datasets and testing data-

sets. In the first approach, 80 and 20% of all genes were randomly

selected as training and testing dataset. In the second approach,

four yeast species were chosen as training dataset, with the

remaining species as testing dataset. In order to improve the

performance of our machine learning predictor, the datasets were

balanced by oversampling the minority class instances (Lanera

et al, 2019). To investigate whether the evolution-based features

would help to enhance the prediction of essential genes using ML,

both the support vector machine (SVM) and random forest (RF)

algorithms were applied. All ML models were implemented in

scikit-learn v0.22.1.

ML prediction performance evaluation

Several standard evaluation metrics comprising recall (or sensitiv-

ity), specificity, accuracy, precision and F1 score were adopted to

assess the prediction performance of the ML models. The evaluation

metrics were calculated as follows:

True Positive Rate or Recall or Sensitivityð Þ ¼ TP

TP þ FN
(8)

Specif icity ¼ TN

TN þ FP
(9)

Accuracy ¼ TP þ TN

TP þ TN þ FP þ FN
(10)

Precision ¼ TP

TP þ FP
(11)

False Positive Rate ¼ 1� Specif icity (12)

F1 score ¼ 2∗Precision∗Recall
Precisionþ Recall

(13)

where TP, TN, FP and FN denote true positive, true negative, false

positive and false negative, respectively.

To evaluate the performance of different ML models, the

receiver operating characteristic (ROC) curve was utilized

through fivefold cross-validation. The ROC curve was plotted

with false positive rate (FPR) on the x-axis and true positive

rate (TPR) on the y-axis. The higher the area under the ROC

curve (AUC) value, the better performance the machine learning

model has in prediction. When comparing gene essentiality

prediction by using sequence features alone and by combining

sequence features with evolution-based features, it could be

found that the AUC values for essential gene prediction on test-

ing dataset with SVM and RF algorithm were improved from

0.65 to 0.81 and 0.65 to 0.80, respectively (Appendix Fig S4C

and D). For features’ contribution analysis, all of the features

were set as the input in the ML, and chi-square test (Chen et al,

2020) was used to rank features according to their contribution

to the ML prediction.

Quantification and statistical analysis
For two group comparisons in this work, a two-tailed Wilcoxon

rank sum test was calculated.

Data availability

More detailed results in this study are available on https://figshare.

com/articles/dataset/Comprehensive_evolution_analysis_with_genome_

scale_metabolic_models_reveals_diverse_mechanisms_in_metabolic_

innovations_across_332_yeast_species/14473776.

GEMs for 343 yeast/fungi species are available in the BioModels

database (www.ebi.ac.uk/biomodels) with accession numbers

MODEL2109130002, MODEL2109130004-MODEL2109130011,

MODEL2109130013, MODEL2109130014, MODEL2109240001 and

MODEL2109240002.

All scripts are recorded using a version control system, Git, and

hosted in three GitHub repositories: metabolic model reconstruction

in https://github.com/SysBioChalmers/Yeast-Species-GEMs; evolu-

tion analysis in https://github.com/SysBioChalmers/Multi_scale_

evolution; and essential gene prediction in https://github.com/

SysBioChalmers/MLEssential.

Expanded View for this article is available online.
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