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Abstract

Motivation: Post-translational modification (PTM) is an important biochemical process. which includes six
most well-studied types: phosphorylation, acetylation, methylation, sumoylation, ubiquitylation and glycosylation.
PTM is involved in various cell signaling pathways and biological processes. Abnormal PTM status is closely
associated with severe diseases (such as cancer and neurologic diseases) by regulating protein functions, such as
protein–protein interactions (PPIs). A set of databases was constructed separately for PTM sites and PPI; however,
the resource of regulation for PTM on PPI is still unsolved.

Results: Here, we firstly constructed a public accessible database of PTMint (PTMs that are associated with PPIs)
(https://ptmint.sjtu.edu.cn/) that contains manually curated complete experimental evidence of the PTM regulation
on PPIs in multiple organisms, including Homo sapiens, Arabidopsis thaliana, Caenorhabditis elegans, Drosophila
melanogaster, Saccharomyces cerevisiae and Schizosaccharomyces pombe. Currently, the first version of PTMint
encompassed 2477 non-redundant PTM sites in 1169 proteins affecting 2371 protein–protein pairs involving
357 diseases. Various annotations were systematically integrated, such as protein sequence, structure properties
and protein complex analysis. PTMint database can help to insight into disease mechanism, disease diagnosis and
drug discovery associated with PTM and PPI.

Availability and implementation: PTMint is freely available at: https://ptmint.sjtu.edu.cn/.

Contact: haifengchen@sjtu.edu.cn or jian.zhang@sjtu.edu.cn or jing.li@sjtu.edu.cn

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Post-translational modification (PTM) is an important biochemical
process among several organisms. There are over 400 known PTM
types, of which six types are well studied, including phosphorylation
(Phos), acetylation (Ac), methylation (Me), sumoylation (Sumo),
ubiquitylation (Ub) and glycosylation (Glyco). Most biological
process and signaling pathway occur by interaction of two or more
proteins (De Las Rivas and Fontanillo, 2010), which are regulated
by PTM (Seet et al., 2006). Abnormal PTM status on proteins could
lead to severe diseases [such as Alzheimer’s disease (Lau et al.,
2008), cancer (Gu et al., 2013) and cardiovascular disease (Coxon

et al., 2012)] by regulating protein functions, such as protein–pro-
tein interactions (PPIs).

Thousands of PTM sites of several organisms have been identi-
fied owing to the advancements in mass spectrometry (MS)
(Choudhary and Mann, 2010; Gao and Chen, 2021; Swietlik et al.,
2020). The abundant PTM data are stored in publicly available
resources, such as PhosphoSitePlus (Hornbeck et al., 2015), qPhos
(Yu et al., 2019), Phospho.ELM (Dinkel et al., 2011), dbPTM (Li
et al., 2022), PLMD (Xu et al., 2017) and the universal database,
Uniprot (UniProt, 2012). However, the role of massive PTM sites in
protein, especially on the PPIs is still remained to clarify.
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Uniprot database offers the ‘PTM/Processing’ section to record
the PTM sites and/or processing events. However, its relatively hard
for inexperienced users to search and browse, and it also lacks the
information of PTM onto the 3D structures. Another database,
PhosphoSitePlus (Hornbeck et al., 2015) provides PTM effects on
PPIs based on literature mining with Linguamatics software (Bandy
et al., 2009), which inevitably includes much false positive results.
To date, several tools and resources are emerged to predict the PTM
functions. PTMfunc predicts the PTM effect based on the conserva-
tion in the domain (Beltrao et al., 2012). PTMcode provided known
and predicted functional associations between PTMs based on co-
evolution theory (Minguez et al., 2015). Another two different
methods, one is Mechismo web server based on interface pair poten-
tials (Betts et al., 2015) and the other is FoldX software based on
empirical forcefield (Schymkowitz et al., 2005), which rely on inter-
facial PTM sites in practice, solely.

With all the above in consideration, we presented the PTMint
database, a comprehensive experimentally verified PTM effects on
PPIs, such as PTM types and sites, interaction proteins, detection
methods, associated diseases and co-localization. Moreover, in order
to facilitate the investigation of PTM roles, we combined the experi-
mental evidence with sequence and structure annotation. This data-
base will be helpful for researchers to explore the relationship
among PTM, PPIs and diseases in sequence and structure aspects.

2 Materials and methods

2.1 Data sources
The workflow of the PTMint database construction was shown in
Figure 1, including data collection and annotation. We defined the
regulatory roles of PTM on PPIs (Betts et al., 2015, 2017; Li et al.,
2012; Lin et al., 2021; Seet et al., 2006; Spektor and Rice 2009;
Wang et al., 2022): (i) Enhance: Increase affinity and (ii) Inhibit:
Decrease affinity. We extracted the functional PTM sites and associ-
ated literature from Uniprot (UniProt, 2012), PTMD (Xu et al.,
2018), PTMfunc (Beltrao et al., 2012) and PhosphoSitePlus
(Hornbeck et al., 2015) databases. We also downloaded the relevant
literature using PubMed database by searching the following key-
words and the combinations: Homo sapiens, Arabidopsis thaliana,
Caenorhabditis elegans, Drosophila melanogaster, Saccharomyces
cerevisiae, Schizosaccharomyces pombe, protein, bind, associate,
enable, interact, interaction, inhibit, disable, prevent, dissociate,
site, PTM, Phos, Ac, Me, Sumo, Ub and Glyco. Then, we checked
the full text of the above nearly 3600 papers carefully to obtain
complete experimental evidence, which included regulatory PTM
sites and types, interacting proteins, detection methods, associated
diseases and co-localization. Briefly, we examined the relationship
between PTM and disease based on cellular or animal disease mod-
els in each literature. Then, based on the detection method of PPIs,
we examined the protein interactions affected by PTM in the full
text. By the way, we established the relationship among PTM, pro-
tein interactions and diseases.

2.2 Protein sequence analysis
We searched the Uniport database (UniProt, 2012) to obtain all ca-
nonical protein sequences. And the sequence window (upstream and
downstream five residues around the PTM sites) was also extracted.
The disorder propensity scores were calculated by IUPred2A
(Meszaros et al., 2018). Protein sequences were annotated using
Pfam database to obtain functional domain information (Mistry
et al., 2021).

2.3 Protein structure
For individual proteins, we downloaded the full-length protein
structures in bulk from AlphaFold Protein Structure Database
(AlphaFold DB) (Varadi et al., 2022). If the protein length was lon-
ger than 2700 amino acids, we used AlphaFold (version 2.1.2)
(Jumper et al., 2021) to predict the domain structures of long-length
proteins, respectively. For protein complexes, all the paired protein
sequences were mapped to the PDB database (Berman et al., 2000)
using blastp against pdbaa with e-value of 10�4. The PDB entries
were selected according to the following criteria: (i) The PTM sites
existed on the structures. (ii) The protein name of matched sequence
was same as query protein. (iii) The matched complexes with two
chains were preferred. Due to the limited crystal structures, a large
scale of protein–protein dockings was performed by molecular dock-
ing softwares. ZDOCK is a fast Fourier transform-based docking
procedure for rigid proteins that searches for all possible binding
modes in the translational and rotational space between two pro-
teins and evaluates each pose using an energy-based scoring function
(Pierce et al., 2014). HDOCK is the hybrid docking algorithm of
template modeling and free docking based on the docking program
and allows the users to provide possible protein–protein binding
sites to perform rapid protein–protein docking (Yan et al., 2020).
PyMOL performs molecular docking based on template alignment,
which maximizes the retention of the docking mode of the original
template structure (DeLano, 2010). For homology modeling, we
used PyMOL (version 2.4.1) to obtain complex structure based on
PDB template structure. For molecular docking, we used ZDOCK
(version 3.0.2) and HDOCK (version 1.1) by using XL-MS data
(cross-linking) through exhaustive curation of published literatures
and predicted domain–domain interactions provided by INstruct
database (Meyer et al., 2013) as the docking constraints. For the
protein–protein docking results provided by all softwares, we uni-
formly used the structure with the highest score in the software as
the final docking complex structure.

2.4 Interaction analysis
Interaction assignment was handled with in-house software (Chen
and Luo, 2007; Wang et al., 2014). The hydrophobic interaction
(HP) is defined when the mass centers of side chain for hydrophobic
residues are closed within 6.5 Å. The charge–charge interaction
within 11 Å plays a key role in protein/ligand-binding free energy
(Qin et al., 2010). Thus, the distance between the mass centers of
charge residues is less than 11 Å, which was considered as electro-
static interaction (ELE). A hydrogen bond (HB) within the complex
is defined when the distance of two polar heavy atoms is less than
3.5 Å and the bond angle is larger than 120�. We utilized the
InterfaceResidues.py Python script created by Vertrees J (https://
pymolwiki.org/) for complex interfaceResidues analysis. Briefly, this
Python script splits the complex into two pieces for two interacting
chain and then calculates the difference between the complex-based
accessible surface areas and the chain-only-based accessible surface
areas. If the value is greater than cutoff (the default is 1.0 Å2), the
residues is marked as interfacial residue. The same process was
handled for PTM sites to label interfacial PTM sites.

2.5 Secondary structure analysis
To obtain the property of the secondary structure of complex struc-
tures and PTM sites, the secondary structure content was calculated
by Dictionary of Protein Secondary Structure algorithm (Kabsch
and Sander, 1983) according to the residue-specific HBs in eightFig. 1. The overall design and construction of PTMint database

2 X.Hong et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/39/1/btac823/6957085 by guest on 21 January 2023

https://pymolwiki.org/
https://pymolwiki.org/


secondary structures (p-helix, 3, (10)-helix, a-helix, b-bridge, b-
sheet, turn, bend and coil). For simplification, we have classified
into four types: (i) Helix: p-helix, 3, (10)-helix and a-helix; (ii)
Sheet: b-bridge and b-sheet; (iii) Turn: turn; (iv) Loop: bend and
coil.

2.6 Score calculation
Among the 20 basic amino acids in proteins, some amino acids are
frequently PTM-modified, such as Serine (S), Threonine (T),
Tyrosine (Y), Lysine (K) and Arginine (R). Serine and Threonine can
be modified by Phos and Glyco. And Lysine can be modified by mul-
tiple modifications, such as Ac, Me, Sumo and Ub. To assess the im-
portant regulatory role of PTM in PPI networks in vivo, we
introduced the importance score of PTM sites.

This importance score takes into account of the number of PTM
types and interacting proteins and calculated with Equation (1).

Score ¼ 2 •
X
ðPTM • NÞ: (1)

In which N is the number of protein which specific PTM site
regulates.

And the Score can be normalized with Equation (2).

Normalized score ¼ 1� 1=Score
Normalized score 2 ½0:5; 1Þ : (2)

The normalized_score reflects the relative importance of specific
regulatory PTM sites, which will increase as the number of PTM
types or interaction proteins increase.

2.7 Database and web interface implementation
The web interfaces were implemented in Hyper Text Markup
Language (HTML), JavaScript (JS) and Cascading Style Sheets. And
the web frame was supported by Bootstrap v4 framework.
Furthermore, 3Dmol.js plugin was employed to visualize protein 3D
structures (Rego and Koes, 2015). And the PPI network was ana-
lyzed and visualized by ECharts plugin (Li et al., 2018). Besides, all
figures and tables in the website were performed in Python.

3 Results

3.1 Database and content
The current version of PTMint contains 2477 non-redundant PTM
sites in 1169 proteins affecting 2371 protein–protein pairs involving
357 diseases. Uniport database provides the 425 records of PTM ef-
fect on PPI and 322 functional PTM sites. PTMD database provides
the 45 records of PTM effect on PPI and 34 functional PTM sites.
And PhosphositePlus guides us to search some reference literature
based on text mining. In the two regulatory roles (Enhance and
Inhibit), ‘Enhance’ has a bigger proportion, suggesting that PTM
might tend to increase PPIs (Table 1). In our results, the top 1 of six
main PTM types with the largest number is Phos (87%) (Fig. 2A).
The main regulatory PTM sites are Serine (S), Threonine (T) and
Tyrosine (Y), which have a cumulative proportion of 87.20%
(Fig. 2B).

As shown in Supplementary Table S1, of all the experimentally
verified regulatory PTM sites, 15.82% localizes in the protein–pro-
tein interfaces, suggesting a large proportion of non-interfacial sites

can also regulate molecular interactions; 36.61% can be found in
the functional domains, implicating the important biological role of
PTM in modulating protein function. In the view of secondary struc-
ture, PTM sites tend to localize in the loop region rather than struc-
tured regions (Helix, Sheet and Turn) (Table S2). Based on results of
score calculation, the score of most PTM sites (fraction: 74.54%) is
0.5, which indicates most site modified by one type of PTM, can
modulate one PPI in the collected data. And the K10 site of H3C1
possesses the highest score of 0.97. Ac of K10 can regulate five dif-
ferent PPI, including BAZ1B, BRD7, CHD4, CRH and TRIM33. In
addition, the Me of K10 can regulate 14 different PPIs, including
AGO3, CBX1, CBX3, CDYL, CDYL2, CHAMP1, CHD4, DCAF8,
HSFY1, KAT5, MAD2L2, POGZ, UHRF1 and ZNF470.

To further understand the intrinsic characteristics of PTM-
modified proteins and interactor proteins, these all proteins were
grouped into multiple classifications according to the biological
function (Supplementary Table S3), mainly enzymes and transport-
ers, suggesting these proteins with PTM participate in extensive bio-
logical processes and signaling pathways. In the database, there are
total 2960 complex structures which 360 structures (fraction:
12.16%) come from PDB experimental structures, 203 structures
(fraction: 6.86%) from homology modeling (PyMOL) and 2397
(fraction: 80.98%) structures from molecular docking (ZDOCK and
HDOCK). According to the prior docking knowledge (XL-MS and
domain–domain interaction), each complex was assigned a confi-
dence value (High, Medium or Low), 32.26% of which were ‘High’
or ‘Medium’.

The top 10 diseases affected by PTM were counted and shown in
Figure 2C, which mainly included following three types: (i) cancers:
breast cancer (number: 340), cancers (number: 323), cervical cancer
(number: 302), osteosarcoma (number: 136), lung cancer (number:
127), colon cancer (number: 119), prostate cancer (number: 76) and
hepatocellular carcinoma (HCC) (number: 61); (ii) Alzheimer’s
disease (AD) (number: 63); and (iii) diabetes (number: 52). We also
constructed a PTM-associated PPI network (Fig. 2D). Nodes with
high degree in PPI network represent the core nodes. The results
showed that the top 10 genes with the highest degrees were:
YWHAB (degree: 80), H3C1 (degree: 50), YWHAZ(degree: 49),
TP53 (degree: 47), PIN1 (degree: 45), GRB2 (degree: 34), YWHAG
(degree: 34), CTNNB1 (degree: 34), YWHAE (degree: 33) and
PLK1 (degree: 29) (Fig. 2D and E), suggesting that these genes were
disease-susceptible and potential drug targets.

3.2 Web search function
Quick search and advanced search were implemented on the home-
page and ‘Search’ page, respectively. On the homepage, the user can
directly search the database by inputting keyword (such as Gene,
Uniprot, PTM, Effect and Organism) (Fig. 3B). Single or multiple fil-
ter conditions, such as Gene/Uniprot, Organism and PTM types can

Table 1. Summary of PTM effects on PPIs

PTM types PTM sites Enhance Inhibit

Phosphorylation S, T, Y 2157 968

Acetylation K 170 86

Methylation K, R 81 19

Sumoylation K 53 26

Ubiquitylation K 60 11

Glycosylation S, T 5 0

Fig. 2. The data in the PTMint database. Statistical analysis results in terms of PTM

types (A) and PTM sites (B). (C) Top 10 diseases affected by PTM. (D) PTM-associ-

ated PPI network. Top 10 genes with highest degrees were highlighted in PPI (D)

and visualized in bar plot (E)
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be specified on the ‘Search’ page (Fig. 3B). Taking ‘CTDP1’ gene
as an example, the searched results will be shown in a tabular
format, including Organism, Gene, Uniprot, PTM, Site, AA,
Int_uniprot, Int_gene, Effect, PMID and Detail (Fig. 3B).
Hyperlinks for Uniprot and PubMed are provided. And the two
types of detailed results can be shown by clicking the ‘Show’
buttons, respectively (Fig. 3B).

The typical result page consists of six main sections (Fig. 3C),
including protein overview (such as organism, protein name, protein
structure and protein domain information), protein features (dis-
order analysis), PTM on PPIs, interaction network, importance score
of PTM sites and complex analysis. In ‘PTM on PPIs’ section, com-
plete experimental evidence and structure, site annotation were inte-
grated (such as whether PTM site localized on the interface or
protein domain, complex origin), which can be saved or searched,
easily. In ‘Complex analysis’ section, complex structures came from
PDB database (Berman et al., 2000) and local molecular dock. And
PTM site and type were mapped onto the structure. And users can
easily manipulate and switch structures. Furthermore, protein inter-
actions (HB, HP and ELE) calculated by in-house software (Chen
and Luo, 2007; Wang et al., 2014) are shown in a tabular format.
InterfaceResidues was also calculated to annotate the spatial loca-
tion of PTM sites. ‘Download’ function was provided for users to
download protein features and all complex information composed
of complex structures, interfaceResidues and interaction. We also
provided several external links, such as Uniport database (UniProt,
2012), AlphaFold database (Varadi et al., 2022), Pfam database
(Mistry et al., 2021) and PubMed database by clicking underlined
links.

3.3 Web browse function
The PTM types and genes were sorted and organized in alphabetical
order, which allow the user to quickly obtain interested results
(Fig. 3A).

3.4 Web download and help function
All data in the PTMint database can be downloaded in the
‘Download’ page, including PTM experimental evidence and protein
structure information. And detailed instructions were available in
the ‘Help’ page.

4 Discussion

To our knowledge, PTMint database is the first comprehensive data-
base of experimental evidence of the PTM effects on PPIs, which not
only includes complete experimental records, such as PTM types
and sites, interacting proteins, detection methods, associated dis-
eases and co-localization, but also integrates the according sequence
and structure annotation (such as molecular dock and interaction
analysis), systematically.

PTM level in proteins is controlled precisely based on a temporal
and spatial context (Cohen, 2002; Hunter, 1995). And the same site
might have different PTM types in various physiological states, such
as cancer and hypoxia (Xu et al., 2022). For example, Lysine (K)
can selectively be acetylated, methylated or ubiquitylated. Serine (S)
can be phosphorylated or glycosylated. In addition, we found the
specific PTM type in a site of the protein, can regulate several pro-
teins in our collected data. For example, phos-S289 in MDM4 can
simultaneously induce MDM4-MDM2 and MDM4-p53 interac-
tions (Wu et al., 2012). Beta2 integrin Phos on Thr758 acts as a mo-
lecular switch to inhibit filamin binding and enhance the 14-3-3
protein binding to the integrin cytoplasmic domain (Takala et al.,
2008). Furthermore, 14-3-3 proteins, which contain a
phosphoprotein-binding domains (PPBDs), can bind phos-T32
FOXO3 (Singh et al., 2010), phos-S253 FOXO3 (Singh et al.,
2010), phos-T642 TBC1D4 (Ramm et al., 2006), phos-S939 TSC2
(Cai et al., 2006), phos-S981 TSC2 (Cai et al., 2006) and phos-S99
BAD (Polzien et al., 2009) in the PI3K-Akt signaling pathway. In
order to assess the roles of regulatory sites, all regulatory sites of the
protein are ranked according to the importance score, which calcu-
lated by PTM types and protein counts. Higher score means higher
important role in disease process and potential drug targets. For
example, the Y654 of CTNNB1 has a high score of 0.93, inhibiting
its Phos by Imatinib offered a therapeutic value in patients with
chronic myeloid leukemia (CML) (Coluccia et al., 2007), which was
in accord with PTM-associated PPI network results (Fig. 2D and E).

According to previous reports (Betts et al., 2017; Shi et al., 2001;
Song et al., 2008), PTM sites which located in the interface between
two proteins, can regulate protein interactions. We supposed
whether PTM sites which not located in the interface, can also en-
hance or inhibit interactions. Therefore, we analyzed all protein
complex and interface amino acids. To our surprise, both interfacial
and non-interfacial sites possess the regulatory roles (Supplementary
Table S1). For example, phos-Y47 in Fe65 which not localizes in the
interface, decreased Fe65 and RASD1 affinity by distal regulation
(Lau et al., 2008). Two PTM sites might be associated with cross-
talk pattern based on spatial proximity (Brooks and Gu, 2003;
Christensen et al., 2005; Minguez et al., 2015), so cooperation and
antagonism among several PTM sites in two interacting proteins
could be investigated by above labeled spatial location. Moreover,
owing to above collected experimental evidence and structural an-
notation, a high-fidelity machine learning prediction method consid-
ering interface information and local microenvironment (Lu et al.,
2022) [such as partial charges, spatial location of carbon (C atom),
nitrogen (N atom), oxygen (O atom), hydrogen (H atom) and sulfur
(S atom), and solvent accessibility], which assessing PTM (such as
Phos, Ac, Me, Sumo, Ub and Glyco) effects (‘Enhance or ‘Inhibit’)
on PPI (Betts et al., 2015; Schymkowitz et al., 2005) can be devel-
oped in the future. Although several algorithms has been developed
to predict kinase-specific Phos sites (Wang et al., 2020; Xue et al.,
2005), to predict Phos sites that specifically interact with
phosphoprotein-binding domains (Guo et al., 2020), a machine
learning method to predict the PTM sites that govern PPIs in the
view of PTM position, motif length and residues weights based on
the sequence window we provided (upstream and downstream five

Fig. 3. The detailed information in PTMint database. (A) Browse function. (B)

Search_function. (C) The returned search results using the CTDP1 as an example.

The entry page consists of six major sections: (1) Protein overview. (2) Protein fea-

tures. (3) PTM on PPIs. (4) Interaction network. Blue square: gene, Green circle:

Int_gene, Red arrow: from gene to int_gene interaction. (5) Importance score of

PTM sites and (6) complex analysis (A color version of this figure appears in the on-

line version of this article)
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residues around the PTM site) could be a promising and challenge
work.

Due to the limited crystal structures, several software and web-
server offer the solution by molecular dock, such as ZDOCK (Pierce
et al., 2014), HDOCK (Yan et al., 2020), ClusPro (Kozakov et al.,
2017) and HADDOCK (van Zundert et al., 2016). In order to
ensure the accuracy of docking results, a large scale of molecular

docking was performed combined with experimental XL-MS data
(cross-linking) and predicted domain–domain interactions.
Furthermore, we also analyzed the interaction (HB, HP and ELE) to

help researchers to better understand the PTM roles in disease.
Changes of interactions (such as HB, HP and ELE) and structure

(such as allostery, disorder-to-order, electrostatic potential and dy-
namic correlation network) induced by PTM can explain why PTM
could regulate PPIs and disease progression (Devanand et al., 2018;

Lingyun and Ji-Bin, 2017). Therefore, our database will provide a
valuable structural basis for further investigations, such as molecular
dynamics simulation (MD) and Markov state models (MSMs).

Furthermore, development of a specific forcefield for the simulation
of protein–protein complex (Piana et al., 2020) modified by multiple

PTM types could be a valuable research filed. Although the statistic-
al results were obtained based on our collected data (Table 1,
Supplementary Tables S1–S3), but it might be potentially biased due

to the limited PTM types and well-studied proteins.
PTMint database can be further improved in the following

aspects. First, the current version of the database contains six main
model organisms and PTM types. More organisms and PTM types

will be added. Second, additional curations, such as PTM-targeted
drugs, PTM expression analysis, PTM-associated survival analysis
and association between PTM and mutation will be integrated.

Third, we will replace the original predicted complex structures
when newly high-resolution complex structures are released in the

PDB database. In the future, we will continually maintain and up-
date the PTMint database, when newly regulatory PTM sites are
reported in the literature.

In conclusion, we developed PTMint, a comprehensive database
of experimentally verified PTM effects on PPIs. We believed that

this database should be a useful platform for biologists and bioinfor-
maticians to explore PTM roles on disease development, diagnosis
and drug discovery.
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