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1  |   INTRODUCTION

Given the rapid growth in available genome data from 
many organisms, it has become possible to apply statisti-
cal sequence analysis to determine the relationships among 
the amino acid sequence of a protein, its function, and the 

three-dimensional structure. A set of methods has been used 
to reveal the groups of residues that are jointly involved in de-
termining functional properties.1-4 Statistical coupling analy-
sis (SCA) performs covariation analysis of a large number of 
multiple sequences and is capable of identifying sets of resi-
dues that are important for protein folding,5 allostery,6 enzy-
matic activity,7 and thermal stability.8 Recently, Salinas and 
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Abstract
Covariant residues identified by computational algorithms have provided new in-
sights into enzyme evolutionary routes. However, the reliability and accuracy of 
routine statistical coupling analysis (SCA) are unable to satisfy the needs of pro-
tein engineering because SCA depends only on sequence information. Here, we set 
up a new SCA algorithm, SCA.SIM, by integrating structure information and MD 
simulation data. The more reliable covariant residues with high-quality scores are 
obtained from sequence alignment weighted by residual movement for eight related 
subfamilies, belonging to α/β hydrolase family, with Candida antarctica lipase B 
(CALB). The 38 predicted covariant residues are tested for function by high-through-
put quantitative evaluation in combination with activity and thermostability assays 
of a mutant library and deep sequencing. Based on the landscapes of both activity 
and thermostability, most mutants play key roles in catalysis, and some mutants gain 
2.4- to 6-fold increase in half-life at 50°C and 9- to 12-fold improvement in catalytic 
efficiency. The activity of double mutants for A225F/T103A is higher than those of 
A225F and T103A which means that SCA.SIM method might be useful for identify-
ing the allosteric coupling. The SCA.SIM algorithm can be used for protein coevolu-
tion and enzyme engineering research.
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Ranganathan using SCA successfully capture the energetic 
couplings that contribute to protein function which proves the 
reliability of this method.9 Covariant residues are distributed 
around protein active sites but can connect to distant func-
tional surface sites through pathways of residue interactions 
throughout the protein.10,11

The combination between amino acid and codon infor-
mation is used to improve the contact prediction.12 Also, the 
SCA method combined with MD simulations (SCA.MD) 
reveals that protein dynamics plays a key role in enzyme 
catalysis.13 Despite their improved accuracy, the MD simu-
lation-assisted SCA methods cannot overcome all the lim-
itations of the sequence-based SCA methods, suggesting a 
need for further development. Because the structure is more 
conservation than sequence, structure-based process could 
construct high-quality alignment. Therefore, a more accurate 
SCA method that accounts for sequence, structure, and dy-
namics is an important need.

Here, we set up a new SCA algorithm named SCA.SIM to 
obtain key functional covariant residues defined as groups of 
statistically correlated amino acid positions in a protein family 
identified by their combined contributions to the most signifi-
cant eigenmodes of a preconstructed SCA correlation matrix. 
The algorithm is based on the structure alignment information 
from the 3DM database14 and the dynamics information from 
molecular dynamics (MD) simulation. Specifically, a defined 
structural feature was used to guide the classification of the 
enzyme subfamilies for increasing the evolutionary structural 
homology and decreasing the historical noise, then a resi-
due-level dynamical correlation matrix based on MD simu-
lation was incorporated into a new SCA matrix for SCA.SIM 
(Figure 1). To evaluate this approach, 38 covariant positions 

were predicted for Candida antarctica lipase B (CALB) and 
confirmed with function annotation and site-saturated muta-
genesis assay. The results indicate that this approach might 
have great potential for the coevolution analysis of proteins 
and useful tool for the directed evolution design of enzymes.

2  |   MATERIALS AND METHODS

2.1  |  Structure-based sequence alignment 
with 3DM

The α/β hydrolase (2014) 3DM database is a high-quality 
structure-based multiple sequence alignment based on 81624 
sequences and composed of separate subfamily sequence align-
ments of 204 subfamilies for which a structure is available.14A 
phylogeny tree analysis of the representative structures of 204 
subfamilies was conducted and is shown in Figure S1. For a 
more specific analysis, we classified the subfamilies accord-
ing to the cap structure and their phylogenic relationships.15 
CALB belongs to Cluster 1 and consists of eight subfamilies 
with a total of 2182 sequences. We used these sequences to 
generate a subset of the α/β hydrolase (2014) 3DM database, 
using the same alignment algorithm within the subset. Then, 
we obtained a high-quality structure-based multiple sequence 
alignment of families closely related to CALB. The alignment 
consisted of 2182 sequences and had 177 aligned positions.

2.2  |  Molecular dynamics simulation

The CALB protein model was extracted from the Protein Data 
Bank (pdb code: 1TCA).16 The docking of the protein and 
p-nitro phenyl caprylate C8 was conducted by Maestro9.2.17 
The simulation was conducted using the AMBER14 software 
package.18 Counterions were used to maintain system neutral-
ity. The system was solvated in a truncated octahedron box of 
TIP3P waters with a buffer of 10 Å. The particle mesh Ewald 
(PME) method19 was employed to treat long-range electrostatic 
interactions. The ff12SB force field was used for the protein. 
Antechamber was used to generate the force field of the sub-
strate.20 Bonds involving hydrogen atoms were constrained 
using the SHAKE algorithm.21 A 22500-step steepest descent 
minimization was performed, followed by heating and brief 
equilibration for 20 ps in the NVT ensemble at 321 K. Three 
independent trajectories of 50 ns each were simulated.

2.3  |  Movement correlation matrix

Correlations between all pairs of residues in the CALB 
complex were calculated from the covariance matrix of 
equation (1) 22-25:F I G U R E  1   Flowchart of the SCA.SIM system
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where Δ �⃗ri (t)= �⃗ri (t)− �⃗ri (t), ⟨⋅⟩ is the time averaging and �⃗ri (t) 
is the position of node i at time point t. In this study, we con-
structed correlation-based networks26 using the covariance 
matrices along the last 50 ns in each trajectory, with 40 ps per 
snapshot. An edge is defined between any two nodes with-
out covalent bond but with heavy atoms closer than 4.5  Å 
over 50% sampling time. The network topological parameters 
were calculated with Cytoscape 3.1.1.27 The shortest path be-
tween any two nodes was calculated using the Floyd-Warshall 
algorithm.28 For community analyses, the Girvan-Newman 
algorithm29 was utilized with the network tools developed by 
the Luthey-Schulten group.26,29

2.4  |  SCA and SCA.SIM

The coevolution relationships between different positions in 
MSA were explored by SCA calculation.8 The input for SCA 
calculation is the multiple sequence alignment, and the output 
is a four-dimensional matrix whose size is L × L × 20 × 20 
for an MSA that has L positions and 20 amino acids in its 
sequence. We can generate a two-dimensional position cor-
relation matrix named SCA after reducing the dimension-
ality of the SCA matrix. The SCA.SIM matrix was created 
by multiplying the individual elements of SCA by the cor-
responding elements of the truncated MD movement corre-
lation matrix.13 In this study, instead of fully applying the 
SCA.MD method from R. August Estabrook's work,13 we 
only used movement correlation to weight the SCA matrix. 
Then, we used the SCA.SIM matrix instead of the SCA ma-
trix as the input to calculate the covariant residues, which 
was described in the literature.8 To evaluate the statistical 
significance of difference between SCA and SCA.SIM, the 
Wilcoxon signed-rank test was done with the data in Table 
S1 using R 3.5.0 software. The command Wilcox.test embed-
ded in R was used to calculate the P value.

2.5  |  Library creation and screening

The CalB gene was synthesized at GenScript Crop. The mu-
tants were prepared by whole-plasmid PCR with primers 
containing NNS (sense strand)/SNN (antisense strand) degen-
eracy at each of the 38 covariant sites. All the primers used in 
this study were synthesized from Invitrogen (Shanghai, China) 
and are shown in Table S2 in the supplemental material. PCR 
was performed with Proofast️TM (ATG Biotechnology Co., 
Ltd) Super Fidelity polymerase and a temperature program 
consisting of 95°C for 2 min; 30 cycles of 10 s at 95°C, 15 s 

at 55°C, and 7 min at 72°C; and a final 10 min extension at 
72°C. The modified PCR program was used for the construc-
tion of paired-residue libraries (A225/T103). The libraries 
were electroporated into Rosetta (DE3) cells. The clones were 
picked in 96-well plates containing 200 μL of two YT me-
dium with 100 μg mL−1 ampicillin. After growth at 37°C for 
12 h, the cultures were used to inoculate fresh medium in an 
identical plate and incubated for a further 3 h at 37°C. After 
0.1 mM isopropyl 1-thio-β-D-galactopyranoside was added, 
the cells were incubated for 24 h at 15°C.

Cells were harvested by spinning at 4000 rpm for 30 min 
and lysed by a triple freeze-thaw from −80°C. Then, 200 μL 
of 50 mM sodium phosphate buffer (PBS, pH 7.5) was added 
to each well. The supernatant was divided into two 96-well 
PCR plates. One plate was incubated at high temperature for 
15 min and cooled at 4°C for 20 min. The other plate was in-
cubated under identical conditions except for the incubation 
at high temperature. The ratio of the activity of each clone 
was taken as the residual activity, which was used to identify 
the positive clones.

2.6  |  Enzyme activity assays

pNP caprylate was used to compare the activity of CalB vari-
ants. The ability of the enzyme to hydrolyze pNP caprylate 
was determined by measuring the absorbance of p-nitrophe-
nol liberated using a UV-2550 spectrophotometer with a 
thermal control unit (Shimadzu, Kyoto, Japan). The reaction 
mixture consisted of 0.02 mL of 10 mM pNP caprylate as 
a substrate in acetonitrile and 0.97 ml of 50 mM PBS, pH 
7.5 containing an appropriate amount (10 μL) of the enzyme 
solution. The enzyme reaction was performed for 1 min at 
37°C. The activities were determined photometrically at 
37°C, and the buffer was adjusted at 37°C unless otherwise 
stated. One lipase unit in this assay is defined as the amount 
of enzyme that liberates 1 μ moL of p-nitrophenol/min under 
these conditions.

For the kinetic studies, the concentration of pNP capry-
late increased from 1.5 to 500 μM. The enzymatic activity of 
CalB variants was determined at 37°C. Kinetic parameters 
Vmax and Km were acquired by fitting enzymatic activities 
as a function of substrate concentrations to the Michaelis-
Menten equation using non-linear regression of the software 
Origin8.0. The parameter kcat was obtained using the follow-
ing equation: kcat = Vmax/[E], where [E] is the molar concen-
tration of the enzymes.

2.7  |  Thermal inactivation and unfolding

The CalB variants (0.1 mg/mL) were incubated at different 
temperatures for different time intervals from 0 to 150 min 

(1)Cij =
Δ �⃗ri (t) ⋅Δ �⃗rj (t)

√
Δ �⃗ri (t)

2 Δ �⃗rj (t)
2
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and then cooled on ice for 10 min. Their residual enzyme 
activities were assayed at 37°C as described above. The data 
were fitted to first-order plots and analyzed with the first-
order rate constants (kd) determined by linear regression of 
ln (residual activity) versus the incubation time (t). The time 
required for the residual activity to be reduced to half (t1⁄2) of 
the CalB variants was calculated using the following equa-
tion: t1⁄2 = ln2/kd. The changes in transition state free energy 
(ΔΔG) for inactivation between mutants and wild type were 
calculated using the following equation: ΔΔG=−RT ln (kd 
mutant/kd wild type)30 where T and R are temperature and 
the gas constant (1.987 cal·K−1·mol−1), respectively. ΔΔG 
of wild type was used as a reference value. kd wild type and 
kd mutant were inactivation rate constants of wild-type and 
mutant CalB, respectively.

2.8  |  Solexa sequencing

According to the activity and thermostability data, we col-
lected clones with greater activity or thermostability than 
wild type as the sorted cell populations. All clones were de-
fined as unsorted cell populations. Then, we had three librar-
ies: activity-sorted cell populations, thermostability-sorted 
cell populations, and unsorted cell populations. All samples 
were processed in parallel and sequenced in same run to min-
imize potential biases. These three libraries were diluted into 
LB plus ampicillin and grown for 12 h at 37°C with shaking 
(250 r.p.m.), respectively. Overnight cultures were centri-
fuged and miniprepped. Purified DNA was quantified, and 
100 ng of plasmid DNA per 50 μL PCR reaction was used 
as a template to obtain targeted fragments by PCR amplifica-
tion. The PCR products were purified and eluted in 20 μL 
of dH2O. Purified PCR products were quantified in triplicate 
using lambda-DNA as a standard. All libraries were pooled 
in equimolar proportions and sequenced using a MiSeq, ver-
sion 3, 2 × 300 run by the GENEWIZ Company.

Sequences from the Illumina RTA base caller were im-
ported into CLC Genomics Workbench as “.qseq” files and 
trimmed for quality using a cut-off of 0.05 for the modi-
fied Mott algorithm. Bases that did not pass the trim filter 
were deleted from each read, and reads shorter than 49 bp 
were discarded. Custom software written in MATLAB was 
used to count the number of occurrences of each allele in 
each population. The functional effect of each allele was 
calculated from the frequency of each amino acid at each 
position.

3  |   RESULTS

The protocol of the SCA.SIM system includes struc-
ture-based multiple sequence alignment and is shown in 

Figure 1. These high-quality multiple sequence alignments 
(MSAs) will be used as inputs to construct the SCA matrix. 
At the same time, multiple MD simulation trajectories will 
represent the representative structure and will be used to 
calculate the dynamic correlation matrix. A combination of 
these matrices will create the SCA.SIM system. Functional 
annotations and in vitro experiments are used to validate 
this system.

3.1  |  Construction of SCA.SIM matrix

Lipases (EC  3.1.1.3) are highly abundant across species 
and have a rich evolutionary history; therefore, this class of 
enzymes was mainly used to evaluate the SCA algorithm. 
Among the characterized lipases, Candida antarctica li-
pase B (CALB) has been extensively studied, including bi-
ochemical and site-directed mutagenesis of the active site 
residues involved in its stereoselectivity and activity.31,32 
These findings make CALB an excellent model for analyz-
ing the function of covariant residues in the α/β hydrolases 
subfamilies. Because the function of an enzyme is corre-
lated with its dynamic motion, combining SCA and MD 
correlations identifies the group of residues that are cor-
related both evolutionarily and in structural motion. MD 
and SCA are independent covariation analyses that have 
several similarities: they reveal couplings between any 
amino acid and other amino acids within a given protein, 
produce matrices with pronounced diagonal elements, and 
relate peptide regions that can be spatially distant.13 It is 
mathematically straightforward to combine the two sets of 
correlations by multiplying the two matrix elements, re-
sulting in a dynamics-weighted SCA matrix (see Materials 
and Methods) (Figure 2).

3.2  |  SCA.SIM reveals more compact 
covariant residues than SCA

The SCA.SIM matrix obtained for CALB shows a similar 
pattern to those of SCA and the motion correlation ma-
trices (Figures 3A-D). Significantly, the residue positions 
in SCA.SIM are more compact than those in SCA, result-
ing in a more defined section. The first mode describes a 
“coherent” correlation between all positions, as reported in 
the literature.8 Historical noise which was caused by phy-
logenetic bias and independent functional constraints and 
did not include evolutionary correction, while evolutionary 
correlations and common ancestry represent evolutionary 
conservation and should have strong relation with biologi-
cal function, is expected to exclude coherent correlations 
between sequence positions. This phenomenon is why a 
pointed distribution appears starting from the origin on 

http://www.chem.qmul.ac.uk/iubmb/enzyme/EC3/1/1/3.html
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eigenvector 1. After we weight the SCA with movement 
correlation, these “coherent” distributions are corrected. 
That is, the historical noise is weakened after the SCA is 
weighted. This correction ensures that the statistical corre-
lations are contributed mostly by evolutionary correlations. 
Meanwhile, this correction distinguishes between correla-
tions that reflect physical interactions and other sources 
such as common ancestry.

The positional distribution analysis of the top three eigen-
vectors is shown in Figure 4A-B. We analyze the probability 
distribution of the eigenmode values of the first eigenvector. 
All the distributions are fitted with a T distribution, and the 
covariant residues are determined by taking the 10% posi-
tions from the fitted distribution. The eigenmode values are 
more concentrated around the origin in SCA.SIM, while 
the difference between the maximum and minimum values 
is larger than that in the original SCA. In the original SCA, 
the distribution of eigenmode values is relatively uniform, 
and the significant positions may have a similar eigenmode 
to those of insignificant positions. This situation will easily 
cause false selection when we want to select only significant 
positions by taking a certain proportion of the fitted distribu-
tion. However, in SCA.SIM, the difference between signifi-
cant and insignificant positions is enlarged, which improves 
the precision in selecting only significant positions.

We find a total of 38 covariant residues by SCA.SIM 
and 27 by the original SCA. The covariant residues are then 
projected onto the CALB protein structure (Figure 4C). In 
contrast to the covariant residues identified by the original 
SCA, the covariant residues identified by SCA.SIM are more 
connected and distributed more tightly around the binding 
pocket.

3.3  |  In silico function validation

We identified 63 residues in CALB that are annotated as 
functional according to the literature of mutagenesis analy-
ses.31-49 At first, we directly statistics the overlap functional 
residues predicted by SCA and SCA.SIM and the results are 
shown in Figure 5A. This indicates that SCA.SIM performs 
better than SCA. To evaluate the significance of difference, 
the Wilcoxon signed-rank test was used to calculate the P 
value, in which the median line is symmetrical and the data 
meet the assumption of test (shown in Figure 5B). The P 
value is 1.07 × 10−5 and much smaller than 0.05. This sug-
gests that the SCA.SIM has more significant prediction abil-
ity of functional residues than SCA.

To further evaluate the function of unannotated covari-
ant residues, the correlation/anti-correlation was calculated 

F I G U R E  2   SCA.SIM analysis. For better presentation of all the matrices, the values on the diagonal were set to 0. A, The position correlation 
matrix obtained by reducing the dimension of the SCA matrix of CALB-related families (SCA). The correlations vary from 0 (uncorrelated) to 2.9 
(correlated). Some columns and rows are missing due to deletions in the multiple sequence alignment. B, The truncated movement correlation of 
a 50-ns simulation of the CALB-substrate complex system. The correlations vary from −0.48 (anti-correlated) to 0.8 (correlated). C, The SCA.
SIM matrix, generated by multiplying the individual elements of SCA with corresponding elements of the truncated movement correlation matrix, 
varying from −0.26 (anti-correlated) to 0.71 (correlated)
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between the covariant residues and annotated functional 
residues based on the previous method.13 Top 20 ranked 
pairs of covariant residue were defined as predicted func-
tional ones and their spatial distribution in CALB (shown in 
Figure S2). The predicted functional covariant residues are 
shown in Figure 6A whose function includes the activity, 
thermostability, and enantioselectivity. And the residues 
in red are reported functional sites.31,32,38,41,42 For exam-
ple, E188 has a strong correlation with W104, D134, and 
M129 (Figure 6B). An increase in catalytic activity was ob-
served after carrying out a single point mutation on these 

three sites. In addition, E188 is correlated with V190, and 
the two are connected by I189 (Figure 6C), which is re-
ported to be involved in catalytic activity and enantiose-
lectivity.31 Accordingly, we speculate that E188 is related 
to both enzyme activity and enantioselectivity. Y135 ex-
hibits significant correlations with D134, V190, D187, 
H224, W104, and M129 (Figure 6D). Mutations of D134, 
W104, and M129 can increase the enzyme catalytic activ-
ity, whereas mutations of V190 can decrease the catalytic 
activity. Moreover, D187 and H224 belong to the catalytic 
triad. Therefore, Y135 is very likely to affect the catalytic 

F I G U R E  3   Comparison of covariant residues generated by the SCA matrix and the SCA.SIM matrix. A, The 3D positional distribution of 
the top three eigenvectors of the SCA matrix. B, The 3D positional distribution of the top three eigenvectors of the SCA.SIM matrix. C, The 2D 
positional distribution of the top three eigenvectors of SCA. D, The 2D positional distribution of the top three eigenvectors of SCA.SIM
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activity. N181 is spatially related to multiple thermostabil-
ity-related residues and, in addition, exhibits significant 
correlations with W104 and M129 (Figure 6E). Therefore, 
N181 is likely to be involved in catalytic activity and ther-
mostability. However, the function of five sites for 37, 182, 
207, 132, and 179 are not identified from the literature. 
Therefore, in vitro experiment was further used to verify 
their function.

3.4  |  In vitro experimental verification

To further evaluate the function of the covariant residues, we 
used a quantitative high-throughput method based on next-
generation sequencing for the large-scale mutational analy-
sis of proteins in a cellular context. The method involves 
three steps:1 construct saturated mutant libraries of 38 co-
variant sites and measure the activity and thermostability 

F I G U R E  4   Probability distribution analysis of first eigenmode values and covariant residues on tertiary structure of CALB. A, The 
probability distribution analysis of the first eigenmode values of the original SCA. B, The probability distribution analysis of the first eigenmode 
values of the SCA.SIM. C, Covariant residues obtained for the tertiary structure of CALB: covariant residues (yellow) generated with the original 
SCA, covariant residues (blue) generated with SCA.SIM

F I G U R E  5   Comparison of known functional residues among the covariant residues obtained by SCA and SCA.SIM. A, The number of 
known functional residues among the covariant residues obtained by both methods. B, Data distribution of known functional residues. Due to the 
two methods generate different numbers of covariant residues, most of the covered known functional residues are gathered in the high eigenmode 
value region. Therefore, we chose the top 27 ranked residues for the presentation. The x-axis represents the accumulated number of covariant 
residues which are ranked by eigenmode values. The y-axis represents the number of known functional residues corresponding to these covariant 
residues
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of all the libraries;2 perform a cell selection step, in which 
clones with activity or thermostability above a specified 
threshold are selected (Figure S3); and 3 perform Solexa 
high-throughput sequencing to determine the frequency of 
each allele in the unselected and selected clones.50-52 The 
effect of each mutation is then expressed as the log fre-
quency of observing each amino acid x at each position i in 
the selected (sel) versus the unselected (unsel) population 
relative to the wild type (WT) using equation (2):

In this assay, mutations without functional effects should 
show a similar frequency in the selected population and the 
wild type (ΔEx

i
 ≈ 0); otherwise, mutations should provide a 

quantitative measure of the functional effect. We used this 
method to carry out a complete single mutation scan of the 
38 covariant sites, which were individually mutated to every 
other amino acid (Figure 7, 38 positions × 19 mutations + 
wild type = 723 variants).

In general, most mutations show significant sensitivity 
to activity or thermostability, which indicates that covariant 
positions are functionally important. To quantitatively evalu-
ate the performance of SCA.SIM, the average (AVG) values 
shown in Figure 7 are used to analyze the activity or thermo-
stability effect of each mutation site. The positive or negative 
value indicates the gain or loss of protein functions. Thus, the 
absolute AVG values can be used to indicate the degree of 

functional changes. The average of the absolute AVG values is 
0.82. In the case of one mutation with a higher absolute AVG 
value than 0.82, it means that this mutation has a significant 
effect on protein activity or thermostability. In summary, most 
of the residues (30 out of 38) have high absolute AVG values 
either in activity or thermostability, indicating that SCA.SIM 
method has powerful predictive ability. For example, the pre-
dicted sites 129, 188, 223, and 225 are involved in catalytic 
activity and also observed in previous works.31,53

To further compare the performance between SCA and 
SCA.SIM, another 14 positions predicted by SCA and not 
covered by SCA.SIM were mutated to cysteine as shown in 
Figure S4A-4B. The results show these 14 mutants have little 
effects on bioactivity. This demonstrates that the performance 
of SCA.SIM is better than that of SCA. As control, we ran-
domly selected 33 non-covariant sites (about 10% residues 
of CalB) and mutated them to cysteine (Figure S4C-4D). 
Similar results were found with 14 uncovered mutants. This 
further supports that the predicted covariant sites with SCA.
SIM have important functions.

3.5  |  SCA.SIM as a tool for protein 
engineering

From the data matrix of activity and thermostability, we can 
also found some good mutants, which means this method 
can also be used as a tool for protein engineering. Therefore, 
we constructed and characterized some activity enrichment 
mutants: A225M, W104V, M129L, and D223R. Using pNP 

(2)ΔEx
i
= log

[
f

x,sel

i

f
x,unsel

i

]
− log

[
f

WT ,sel

i

f
WT ,unsel

i

]

F I G U R E  6   Function prediction of covariant residues with top ranked eigenmode value and biological properties. Residues shown in red stick 
representation have significant correlations with each other. A, Function prediction of covariant residues, including activity, thermostability, and 
enantioselectivity. The residues in red are reported functional sites. B, Correlations between covariant residue E188 and catalytic activity-related 
residues (green mesh). C, Enantioselectivity-related residue I189 is shown in brown sphere representation. D, Correlations between covariant 
residue Y135 and known functional residues. Residues shown in green mesh are reported to increase catalytic activity after mutation. Resies shown 
in blue mesh are reported to decrease catalytic activity after mutation. Residues shown in red mesh are catalytic residues. E, Evolution and spatial 
correlations between covariant residue N181 and thermostability-related residues (yellow mesh)
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F I G U R E  7   Complete single mutagenesis of covariant sites in CalB. A, Data matrix showing ΔE
x

i
. –the activity effect of every mutation x at 

each position i relative to the wild type—colorimetrically, with blue representing loss-of-activity and red representing gain-of-activity mutations. 
B, Data matrix showing ΔE

x

i
–the thermostability effect of every mutation x at each position i relative to the wild type—colorimetrically, with blue 

representing loss-of-thermostability and red representing gain-of-thermostability mutations
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caprylate as the substrate, we measured the kinetic parameters 
of wild-type CalB and these mutants. All mutants demonstrated 
a major increase in kcat, and the mutant A225M displayed the 
highest catalytic efficiency (kcat/Km), nearly 12.0-fold higher 
than that of the wild type and even higher than that of W104V, 
which showed a 9.4-fold increase (Table 1). To monitor the 
dynamic character of catalytic efficiency, 50 ns molecular dy-
namics simulations were performed for wild type and A225M. 
The binding free energy between A225M and substrate was 
lower than that of wild type and consistent with the previ-
ous measured kinetic parameters (Table S3). The mutation 
A225M induced significant conformation change at the op-
posite α-helix, which forms more hydrophobic interactions 
between enzyme and substrate as shown in Figures S5-S6. 
The distance between α-helix and the substrate is about 4 Å 
smaller in A225M than that in wild type. This can partly ex-
plain A225M with high catalytic efficiency. Therefore, we can 
suppose that these sites might play some key roles in protein 
activity and thermostability based on the complexity of inter-
actions between amino acid residues.

As for the thermostability, the mutation sites 130, 180, and 
228 show effects on the thermostability of CalB that are con-
sistent with our predictions. In particular, our previous work 
constructed mutant D223G and found that it increased the 
thermostability and maintained the activity of the protein.53 
We can see the same results in the matrix (Figure 7B). To fur-
ther evaluate the thermostability of positive mutants, V37I, 
T42N, T103G, and G207A were constructed. The half-life t1⁄2, 
transition state free energy (ΔΔG), and inactivation constant 
kd of CalB are listed in Table 2. The t1⁄2 of T103G at 50°C was 

51 min, which was approximately sixfold higher than that of 
the wild type. Thermodynamic analysis showed that the ΔΔG 
values of V37I, T42N, T103G, and G207A were increased by 
0.47, 0.2, 4.62, and 2.24 KJ·mol−1, respectively. Their cata-
lytic efficiencies (kcat/Km) were also increased. In particular, 
that of the mutant T103G increased approximately 11-fold. To 
evaluate the allosteric coupling which provides information on 
the energetic coupling between pairs of residues, we created 
a saturated mutant library (~3000 colonies) for a pair sites of 
A225 and T103. The best mutant A225F/T103A shows the ac-
tivity about 9-fold and 20-fold than those of two corresponding 
single mutants (Table 1). This can give a hint that pairwise mu-
tant might create higher activity than single mutant; therefore, 
we will continue to screen double mutants in the future work 
according to the specific pairwise correlation information.54

4  |   DISCUSSION

4.1  |  Comparison with SCA.MD

To evaluate the difference between SCA.MD13 and SCA.
SIM, the 2182 subfamily sequences used in SCA.SIM were 
realigned with Clustal Omega 55,56 based on sequence. The 
alignments based on sequence of SCA.MD and structure of 
SCA.SIM are significantly different (Figure S7). Then, SCA.
MD matrix and the corresponding covariant residues were 
calculated using the same method as SCA.SIM. The prob-
ability distribution of the eigenmode values of the first ei-
genvector of SCA.MD is decentralized which may cause 
false selection (Figure 8A). As SCA.MD is only based on 
the sequence alignment, the calculated residues are more se-
quence connected than spatial structure connected (Figure 
8B). We identified 45 covariant residues by SCA.MD, and 
12 of them are annotated sites, which means SCA.MD also 
has a powerful predicted ability on the functional residues. 
However, the distribution of these 12 annotated sites is rela-
tively dispersed. We statistics the overlap functional residues 

T A B L E  1   Kinetic constants of wild-type and mutant CalB

Enzyme Km
a (μM) kcat (min−1) kcat/Km (min−1μM−1)

WT 15 ± 0.3 675 ± 10 45 ± 1.2

A225M 11 ± 0.6 5623 ± 173 510 ± 13

W104V 22 ± 0.7 9355 ± 145 425 ± 7.5

D223R 7.3 ± 0.3 2339 ± 82 322 ± 23

M129L 11.2 ± 0.4 1313 ± 36 117 ± 5.7

T103G 7 ± 0.5 3522 ± 150 503 ±  ± 14

G207A 13 ± 0.6 5716 ± 212 442 ± 35

T42N 6.7 ± 0.2 751 ± 18 113 ± 3.7

V37I 7.7 ± 0.1 1079 ± 45 140 ± 6

A225V 11.4 ± 0.3 2416 ± 66 212 ± 4.7

M129V 16 ± 0.5 1094 ± 31 68 ± 3.7

A225F 14 ± 0.6 2151 ± 50 152 ± 10

T103A 13 ± 0.3 921 ± 18 71 ± 1.7

A225F/
T103A

9.5 ± 0.4 13517 ± 230 1431 ± 87

Values represent the mean of three independent sets of experiments.
aThe kinetic constants were determined at 37°C using p-NP caprylate as the 
substrate. 

T A B L E  2   Kinetic stability properties of wild-type and mutant 
CalB

Enzyme kd
a (min−1) t1/2

b (min) ΔΔGc (KJ mol−1)

WT 0.081 ± 0.002 8.5 ± 0.3 –

V37I 0.068 ± 0.001 10.2 ± 0.4 0.47 ± 0.02

T42N 0.069 ± 0.003 9.2 ± 0.1 0.20 ± 0.01

T103G 0.014 ± 0.001 51.1 ± 1.3 4.62 ± 0.03

G207A 0.034 ± 0.002 20.3 ± 0.2 2.24 ± 0.02

–, not detected.
akd denotes the first-order rate constants of inactivation at 50°C. 
bt1⁄2 represents the half-life at 50°C and is equal to ln 2/kd. 
cΔΔG=−RT ln(kd mutant/kd wild type). Values represent the mean of three 
independent sets of experiments. 
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predicted by SCA.MD and SCA.SIM (top 38) and the results 
are shown in Figure 8C. The number of covered known func-
tional residues is 12 in SCA.SIM and 10 in SCA.MD. This 
indicates that SCA.SIM performs better than SCA.MD. And 
we mutated the other 31 SCA.MD sites without covered by 
SCA.SIM and the literature to cysteine as shown in Figure S8 
which shows these mutants have little effects on bioactivity. 
This demonstrates that the performance of SCA.SIM is better 
than that of SCA.MD.

4.2  |  SCA.SIM reveals multiple functions of 
covariant residues

Sectors have been proposed by Dr. Rama Ranganathan 
defined as groups of covariant residues in a protein fam-
ily. They are characterized by statistical independence, 
physical connectivity within the tertiary structure, bio-
chemical independence in mediating protein function, and 
independent phenotypic variation within the protein fam-
ily. Using the S1A family as a model system, they identify 
three biochemical function independent sectors.8 However, 
we found a new phenomenon for covariant residues with 
multiple functions in the α/β hydrolase subfamilies. That 
might be caused by the structure diversity among differ-
ent enzyme families. And the complexity of these covariant 
residues also makes it difficult to interpret their biologi-
cal function specifically. This implies that strict covariant 

residues independence need not be guaranteed in every 
protein family.8 According to our results, the covariant res-
idues are functionally important and are associated with ac-
tivity and thermostability. In particular, the mutants G207A 
and T103G increase both activity and thermostability. Our 
results are in consistent with the previous works that mutate 
residues near active center improve activity and thermosta-
bility.57 Therefore, we assumed that 38 covariant residues 
might modulate both functions, which gives a new sight for 
the diverse co-evolutionary routes.

4.3  |  SCA.SIM provides a novel tool for 
enzyme evolution

Compared to traditional site-directed mutagenesis, SCA.
SIM-guided protein engineering could identify more spe-
cific mutation sites for enzyme evolution. Due to the limi-
tations of traditional protein engineering methods, most 
site-directed mutations are focused on the substrate binding 
pocket or the protein surface.31,58 And these sites have been 
thoroughly studied and new functional sites are urgently 
needed. However, covariant residues are not confined to 
the binding pocket. The covariant residues from SCA.SIM 
can distribute inside the fundamental structure of protein. 
These residues are sites with the potential for strong impacts 
on enzyme function. Combination with the pairwise mutant 
strategy,9 we can rapidly improve the function in covariant 

F I G U R E  8   Results of SCA.MD 
method on CALB. A, The probability 
distribution analysis of the first eigenmode 
values of the SCA.MD. B, Covariant 
residues obtained for the tertiary structure 
of CALB by SCA.MD. C, The number 
of known functional residues among the 
covariant residues obtained by SCA.SIM 
and SCA.MD
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sites. Therefore, SCA.SIM might provide a novel method for 
enzyme evolution. In summary, these results have enhanced 
the available methods for coevolution calculation and may 
provide a reliable reference for identifying the allosteric cou-
pling and the directed evolution of the enzyme.
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