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A B S T R A C T

Combinatorial therapy is a promising strategy for combating complex diseases by improving the efficacy and
reducing the side effects. To facilitate the identification of drug combinations in pharmacology, we proposed a
new computational model, termed PDC-SGB, to predict effective drug combinations by integrating biological,
chemical and pharmacological information based on a stochastic gradient boosting algorithm. To begin with, a
set of 352 golden positive samples were collected from the public drug combination database. Then, a set of 732
dimensional feature vector involving biological, chemical and pharmaceutical information was constructed for
each drug combination to describe its properties. To avoid overfitting, the maximum relevance & minimum
redundancy (mRMR) method was performed to extract useful ones by removing redundant subsets. Based on
the selected features, the three different type of classification algorithms were employed to build the drug
combination prediction models. Our results demonstrated that the model based on the stochastic gradient
boosting algorithm yield out the best performance. Furthermore, it is indicated that the feature patterns of
therapy had powerful ability to discriminate effective drug combinations from non-effective ones. By analyzing
various features, it is shown that the enriched features occurred frequently in golden positive samples can help
predict novel drug combinations.

1. Introduction

In traditional drug design, the paradigm of the one-drug-one-target
had been the dominating approach in the drug discovery for a long
time. However, the old strategy is unlikely to efficaciously deal with
certain complex diseases, such as cancer and diabetes, which are
regulated by multiple signaling pathways or molecular networks
(Csermely et al., 2013; Jia et al., 2009). It is becoming increasingly
apparent that such one-drug-one-target paradigm shows limited
efficacy, which is often due to factors such as network robustness,
redundancy, compensatory actions, and counter-target activities (Jia
et al., 2009). Instead, systems-oriented drug design (such as multi-
target drug or drug combination) becomes a more productive and
promising strategy with higher efficacy but less side effects to overcome
those limitations (Chen et al., 2016d; Fan et al., 2014; Min et al., 2013;
Sun et al., 2015; Xiao et al., 2013a, 2013b, 2015).

Generally, multiple agents or drugs are simultaneously admini-
strated to form effective drug combinations for disease treatment with
significant improvements on drug efficacy and safety. In clinical
practice, the effective drug combinations always consist of Food and
Drug Administration (FDA)-approved drugs or existing bioactive

compounds that have entered clinical trials and passed safety tests.
The effective drug combinations could be used by patients without toxic
side effects. It is quite time and resource consuming to identify all the
effective drug combinations using experimental techniques, since the
number of possible drug combinations will expand exponentially with
the increasing number of single drugs available in the market.
Therefore, computational prediction of drug combinations becomes a
significant and challenging task.

During the last decade, a wide variety of computational models
have already been developed to aid in the discovery of effective drug
combinations. In the first type of methods, the Loewe additivity and
Bliss independence were proposed for quantifying synergy between a
pair of drugs (Ryall and Tan, 2015). The Loewe additivity model is
based on the assumption that the two drugs act through a similar
mechanism while the Bliss independence criterion assumes that they
act by an independent mechanism. Experimental identification of drug
combinations typically involves generating dose response curves with a
pair of drugs in separate or in combination. The experimental dose
response curve data can then be compared to the predictions of Loewe
additivity or Bliss independence to determine if the drugs are acting
synergistically. The second type of methods are system approaches,
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including large-scale modeling of cell signaling networks, network
motif analysis, statistics-based models, correlation identification in
gene signatures, and functional genomics. Network-based methods
were constructed on the genetic variations, protein-protein interaction
(PPI), functional modules, and signaling pathways (Csermely et al.,
2013; Ryall and Tan, 2015; Wang et al., 2012; Wu et al., 2010). Among
the second type of computational methods, many studies were con-
ducted based on feature-based methods. Sun et al. used biological
features from gene expression data of multiple drugs (Sun et al., 2014).
Zhao et al. integrated the biological (drug targets) and pharmacological
(drug therapy) features (Zhao et al., 2011). Chen et al. combined
biological (PPI and target enrichment pathways) and chemical (che-
mical-chemical interaction, CCI) features (Chen et al., 2013a).
However, to our best knowledge, there is still no method which
integrates biological, chemical, and pharmaceutical information alto-
gether to predict drug combinations.

In the present study, we developed a computational method for
Prediction of effective Drug Combinations using a Stochastic Gradient
Boosting algorithm, termed PDC-SGB, which integrates biological (the
PPI information of targets and disease pathways), chemical (2-
Dimensional substructures) and pharmacological (therapy informa-
tion). In order to reduce the redundancy among the features, the
Minimum Redundancy & Maximum Relevance (mRMR) approach
was employed for feature selection (Peng et al., 2005). Then, an
advanced machine learning algorithm, that is, stochastic gradient
boosting algorithm was applied to construct drug combination predic-
tion models based on the selected features.

As demonstrated by a series of recent publications (Chen et al.,
2016c; Jia et al., 2015; Jia et al., 2016b; Lin et al., 2014; Qiu et al.,
2016a, 2016b), to establish a really useful feature-based statistical
predictor for a biological system and also to make the presentation
logically crystal clear, we should follow the five-step guidelines (Chou,
2011): (a) construct or select a valid benchmark dataset to train and
test the predictor; (b) formulate the drug combinations samples with
an effective mathematical expression that can truly reflect their
intrinsic correlation with the target to be predicted; (c) develop a
powerful algorithm (or engine) to perform the prediction; (d) properly
perform cross-validation tests to objectively evaluate the anticipated
accuracy of the predictor; (e) establish a user-friendly web-server for
the predictor that is accessible to the public. Below, let us elaborate
how to deal with these steps one-by one.

2. Materials and methods

2.1. Data sets

The data set of drug combinations were collected from the Drug
Combination Database (DCDB, version 2.0, October 2014 release)
(http://www.cls.zju.edu.cn/dcdb/) (Liu et al., 2014b), which includes
1363 effective drug combinations retrieved from the published clinical
studies and FDA orange book. Among them, we collected 946 pairwise
drug combinations from 817 single drugs. A drug combination would
be further removed if the feature information of either of its
components was not available. Finally, the set of 352 pairwise drug
combinations from 337 distinctive single drugs were remained as our
Golden Positive Samples (GPS) (Table S1). The non-effective drug
combinations were generated by randomly pairing drugs that appeared
in the data set of positive samples. Among the 56,264 possible non-
effective drug combinations, we randomly selected 1760, 1056, and
352 combinations as the Golden Negative Samples (GNS), which were
the synthesized data sets where the positive-to-negative ratio is 1:5,
1:3, 1:1, respectively. In the subsequent sections, we used the balanced
data set that the number of negative pairs was equal to that of positive
pairs if there was no statement (the other two negative data sets gave
the similar level classification performances and hence only the results
on balanced data set were shown in the rest of the article if not

specified). In order to remove the sample bias and achieve a robust
result, the process for randomly selecting negative samples was
repeated by ten times to generate ten groups of negative samples for
model training. The final performance was reported by averaging the
performance of the ten runs.

2.2. Feature construction and selection

In this study, we integrated six types of features to describe the drug
combinations, which include the molecular 2D structures, structural
similarity, anatomical therapeutic similarity, protein-protein interac-
tion, chemical-chemical interaction, and disease pathways. The target
proteins, molecular 2D structures, and the Anatomical Therapeutic
Chemical code information of the drugs were extracted from DrugBank
(http://www.drugbank.ca/) (Law et al., 2014).

2.2.1. Molecular 2D structures
The software package Molecular Operating Environment (MOE,

http://www.chemcomp.com/) was used to calculate the 2D MACCS
(Molecular ACCess System) fingerprints of drug molecules (Vilar et al.,
2008). The fingerprint of a drug is represented as a feature vector of
166 elements, in which each element of the vector represents the
existence or nonexistence of a specific substructure (Vilar et al., 2014).
For each drug combination, if both drugs in a pair have the same
substructure, it is encoded as 3; if only one component has a given
substructure, it is encoded as 2; if neither of them has it, it is encoded
as 1. The 166th bit representing “fragment” was not included since all
drugs had only one fragment. In total, the feature vectors of 165
elements were used to represent the molecular 2D structural
information of a drug combination.

2.2.2. Structural similarity between drugs
Tanimoto coefficient (TC) was used to measure the similarity of 2D

structural fingerprints between two drug molecules. Given the two
drugs di and dj, the TC between them was calculated as follows:

TC(T , T) =
T ∩ T
T ∪ T

i

i j
i j

j

(1)

in which, Ti and Tj were the fingerprints of di and dj, respectively. TC
ranges from 0 (minimum similarity) to 1 (maximum similarity).

2.2.3. Protein-protein interaction similarity
The target proteins of drugs have been demonstrated to play an

important role in the prediction of effective drug combinations (Chen
et al., 2013a; Xu et al., 2012). In this work, we included the PPI
information of drug target proteins to infer the potential effective drug
combinations. The PPI information of target proteins was obtained
from the Biological General Repository for Interaction Datasets
(BioGrid Version 3.2.116) (http://thebiogrid.org/) (Chatr-Aryamontri
et al., 2015). The protein interaction information of a drug includes a
set of the proteins which interact at least one target of the drug. The
calculation of PPI similarity of two drugs was similar to the definition
of structural similarity as described in Eq. (1).

2.2.4. Anatomical therapeutic similarity
The Anatomical Therapeutic Chemical (ATC) coding system is used

for the classification of drugs according to the organ or system on
which they act and their therapeutic, pharmacological and chemical
properties. A drug has one code or more than one codes. In this system,
drugs are catalogued into different groups at 5 levels. We considered
the first 3 levels since the most of drugs in our data sets have no
similarity in the fourth and fifth level. The kth level drug ATC similarity
(Sk) between di and dj was defined as:

S (d , d )=
ATC (d )⋂ATC (d )
ATC (d )⋃ATC (d )

i
k i j

k k j

k i k j (2)
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where ATCk(di) represents all the ATC codes of drug di at the kth level,
k ranges from 1 to 3.

In addition, the mean, maximum and minimum values of the three
scores were also taken as the features of therapeutic similarity in the
study.

nMean(d , d )=
∑ S (d , d )

n
( =3)k

n

i j
=1 k i j

(3)

S d d kMax(d , d )=max ( , )( =1, 2, 3)k i ji j (4)

S d d kMin(d , d )=min ( , )( =1, 2, 3)k i ji j (5)

2.2.5. Disease pathway influence
Since the target proteins of different drugs could be involved in a

same disease pathway, we mapped the drugs to the corresponding
disease pathways in MSigDB (http://www.broadinstitute.org/gsea/
msigdb/) (Chen et al., 2013a; Subramanian et al., 2005), and
constructed two scores to evaluate their influence to that pathway.
Similar to the feature of molecular 2D structures, the first score was
defined as follows. For each drug combination, if the target proteins of
drugs in a pair were involved in the same disease pathway it is encoded
as 3; if only the target protein of one drug was involved in the given
disease pathway, it is encoded as 2; if neither of them was, it is encoded
as 1.

The second score was the -log10 of the hypergeometric test p value
of gene set Gi, which includes all target proteins of the drug di and its
direct neighbors in the PPI network extracted from BioGrid. The
influence of drug di to disease pathway DPj could be measured by
the disease pathway enrichment score, which was calculated in the
similar way as (Chen et al., 2013a; Huang et al., 2012).

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∑Score =−log (M/k)(N − M/n − k)

(N/n)k m

n

i
j

10
= (6)

where N is the number of genes in human, M is the number of genes
annotated to the disease pathway DPj, n is the number of genes in Gi,
and m is the number of genes both in Gi and DPj. The higher
enrichment score indicates that this drug is more likely to have
influence on the given disease pathway.

We calculated the scores of two components di (i=1, 2) in a drug
combination in each of the 186 disease pathways, generating dpi

1,dpi
2,…

, dpi
186(i=1, 2), where dpi

j was the score defined in Eq. (6). For each drug
combination (d1, d2), the 372 features can be derived from these
enrichment scores as follows.

dp + dp , dp +dp , …,dp +dp1
1

2
1

1
2

2
2

1
186

2
186

(7)

d dp −dp , dp −dp ,…, p −dp .1
1

2
1

1
2

2
2

1
186

2
186

(8)

2.2.6. Chemical-chemical interaction confidence score
The information of chemical-chemical interactions was retrieved

from STITCH (http://stitch.embl.de/) (Kuhn et al., 2014). Each
interaction has a combined confidence score which describes the
overall similarity between each pair of chemicals. The larger
confidence score indicates the higher probability of two chemicals to
interact with each other. These confidence scores were scaled to the
range [0,1] as the input feature values.

In total, each drug combination was represented by a 732 dimen-
sional feature vector to describe its properties, where the 165 dimen-
sions from the molecular 2D substructure, 1 dimension from structural
similarity between drugs, 1 from PPI similarity, 6 from anatomical
therapeutic similarity information, 558 (186+186+186) from the
disease pathway information, and 1 from CCI similarity. To avoid
overfitting, the feature selection procedure was performed to analyze
these features and extract useful ones by removing redundant subsets.
mRMR was applied here which is a powerful method for ranking the

features through maximizing the dependency between the selected
features and the classification variables, in the meanwhile, minimizing
the correlation of the inner features (He et al., 2010).

2.3. Model construction

Machine learning algorithms have been widely applied in the
bioinformatics field (Liu et al., 2016a, 2016b, 2015; Shen and Chou,
2009, 2010). Three different classification algorithms were implemen-
ted to build prediction models in this work. They were support vector
machine (SVM), naïve bayes (NB), and stochastic gradient boosting
(SGB) (Friedman, 2002). Prediction models based on different machine
learning algorithms were implemented by applying classification and
regression training (Caret) package in R, including parameter optimiz-
ing, model training, and evaluating (Kuhn, 2008). In SVM algorithm,
Gaussian kernel was employed as the kernel function. The cost factor c
for outlier samples and gamma γ in kernel function were optimized by
grid search. In NB algorithm, Laplace smoothing was used in the case
that the posterior probability was zero. In SGB algorithm, gradient
boosting is a machine learning technique for regression and classifica-
tion problems, which constructs a prediction model using an ensemble
of weak classifiers, typically decision trees. It builds the model in a
stage-wise fashion, and constructs additive regression models by
sequentially fitting a simple parameterized function (base learner) to
current pseudo-residuals by least squares at each iteration. The
pseudo-residuals are the gradient of the loss functional being mini-
mized. It is worth noting that both the approximation accuracy and
execution speed of gradient boosting can be substantially improved by
incorporating randomization into the procedure (Friedman, 2002). The
parameters of SGB (depth of interacting, the number of tress, and
shrinkage) were optimized for prediction models.

In statistical prediction, the following three cross-validation meth-
ods are often used to examine a predictor for its effectiveness in
practical application: independent test, subsampling test, and jackknife
test. However, of the three test methods, the jackknife test is deemed
the least arbitrary that can always yield a unique result for a given
benchmark dataset as elaborated in (Chou, 2011) and demonstrated by
Eqs.28–30 in (Chou, 2011). Accordingly, the jackknife test has been
widely recognized and increasingly used by investigators to examine
the quality of various predictors (Chen et al., 2016a; Dehzangi et al.,
2015; Hajisharifi et al., 2014; Khan et al., 2015; Nanni et al., 2014;
Tahir and Hayat, 2016). However, to reduce the computational time,
we adopted the 10-fold cross-validation in this study as done by many
investigators with some classification algorithm as the prediction
engine to train the prediction model (i.e. train the parameters). Then,
the independent test was applied to evaluate the trained prediction
models, and used for comparison among different methods.

2.4. Model evaluation

The performance of prediction models was evaluated by:

TP
TP FN

Recall =
+ (9)

TP
TP FP

Precision =
+ (10)

F Recall Precision
Recall Precision

= 2* *
+1 (11)

TP TN FP FN
TP FP TN FN TP FN TN FP

MCC = * − *
( + )*( + )*( + )*( + ) (12)

where TP is the number of correctly predicted effective drug combina-
tions, TN is the number of correctly predicted non-effective drug
combinations, FP is the number of non-effective drug combinations
predicted as effective ones, and FN is the number of effective drug
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combinations wrongly predicted as non-effective ones. (Baldi et al.,
2000; Xiong et al., 2011a, 2011b, 2012). Since the four metrics,
particularly the MCC, are lacking intuitiveness and not easy to under-
stand for most biologists. The readers could take the advantage of using
Eq.14 of (Chen et al., 2013b) and Eq.11 of (Lin et al., 2014) for more
intuitive and easier-to-understand metrics formulations. The advan-
tage of using this kind of intuitive merits has been concurred by a series
of studies published very recently (Guo et al., 2014; Jia et al., 2016b,
2016c; Liu et al., 2016a, 2016b, 2014a; Qiu et al., 2014). The set of
metrics is valid only for the single-label systems. For the multi-label
systems whose existence has become more frequent in system biology
(Chou et al., 2011, 2012; Lin et al., 2013; Wu et al., 2011) and system
medicine (Qiu et al., 2016b; Xiao et al., 2013c), a completely different
set of metrics as defined in (Chou, 2013) is used. Moreover, a receiver
operating characteristic (ROC) curve is plotted by the sensitivity versus
(1-specificity) for a binary classifier at dynamic thresholds ranging
from 0 to 1. The area under the curve (AUC) was used as a measure to
evaluate the predictive performance.

3. Results

3.1. Analysis of the features of drug combinations

As described above, a feature vector of 732 dimensions were
constructed to represent a pairwise drug combination. However, the
resultant high-dimensional feature vector increased the possibility of
being relevant or redundant among its feature elements. In this section,
we aimed to produce an mRMR feature list. The mRMRmethod ranked
each feature according to both its relevance to the target classification
variable and the redundancy between the features (Huang et al., 2010).
The features with scores larger than zero were selected for model
construction in the next step. The top 50 features ranked by mRMR
were investigated to analyze the importance of different types of
features. As shown in Fig. 1, the features of CCI confidence score and
ATC codes accounted for more proportion than other types of the
features in the selected ones. The percentages of different features in
Fig. 1 were normalized by the dimensions of the features since the
number of elements or dimensions from different types of features had
a wide range.

Next, to examine the distinguishing power of different features, the
statistical analysis was performed, such as Kolmogorov-Smirnov test,
which is a nonparametric test for determining whether two samples of
observations come from the same distribution. Fig. 2 shows that the
distributions of chemical-chemical interaction confidence scores were
different in golden positive samples and golden negative samples. The
p value was 9.17178E-59, confirming the statistical significance of the
difference of CCI confidence scores between two groups of samples.

3.2. Performance comparison of different classification algorithms

The aim of this section is to compare the classification performance
of different machine learning algorithms (SVM, Naïve Bayes, and SGB)
for prediction of effective drug combinations. Fig. 3 shows ROC curves
of models of the three type of classification algorithms by 10-fold cross
validation on the training data set. As shown in Fig. 3, prediction model
based on SGB performed the best, with its AUC up to 0.9775, followed
by SVM, which was inferior to that of SGB, while the one using Naïve
Bayes was the worst.

Table 1 shows the classification performances of the three types of
algorithms on the independent tests. Among the three methods, all
performance metrics of SGB and SVM were higher than that of Naïve
Bayes. Moreover, not only the AUC score of SGB was higher than that
of SVM, but SGB gave a higher F1 of 0.8979 and MCC of 0.8046
compared with SVM (0.8182 for F1, 0.6598 for MCC) as well.

Overall, the prediction model based on SGB achieved best perfor-
mance. We chose the SGB as the classification engine to construct the
prediction models in the following parts.

3.3. Predictive power of features using SGB

In previous sections, we calculated the scores of features ranked by
the mRMR, which implied that their different levels of distinguishing
power to identify effective drug combinations. In this section, we
further validated the prediction power of features by SGB algorithm.

Fig. 4 presents the ROC curves of the models using different types
of features by SGB. The area under ROC of the model based on ATC
was 0.8103, which implied the feature of ATC had strong potential to
predict whether a drug combination is effective or not. The model
based on the feature of CCI was also performed well, while the
distinguishing power of 2D substructure was interior.

Furthermore, we combined the different types of features to
validate their predictive power. As we mentioned above, the six types
of features were categorized into three group: biological information
(PPI and disease pathways), chemical information (2D substructure,
structural similarity and CCI), and pharmacological information (ther-
apeutic similarity). The performance was significantly improved (the
AUC was increased from 0.6562 to 0.8428) by adding therapeutic
information to biological features. When we added chemical features to
biological ones, the performance was also greatly improved (AUC from
0.6562 to 0.8459). The combination of the therapeutic and chemical
features yielded the better AUC value (0.9033). When combined with
the biological features, the prediction model gave the best performance
(AUC was 0.9519). These results demonstrate that these three groups
of features were capable of providing complementary information for
discriminating effective drug combination from non-effective ones. KS
test was applied here to analyze the significance of the addition of
chemical features to the biological features (p=1.083e-05), and the
improvement of the addition of therapeutic features was also signifi-
cant, as shown in Table 2. Therefore, the SGB model integrating all
three groups of features was selected as the final model in our study.

The pharmacological features (ATC part) had most promising
ability to prediction (AUC=0.8280). To test whether ATC was a
dominant feature of the classification model, we re-evaluated the
feature importance by leaving out the feature of ATC. It was shown
that the prediction performance (AUC=0.8459) was declined in
comparison to that of the classifier using all features.

3.4. Case study

In order to validate whether the PDC-SGB we proposed here was
effective in real application, we then applied our final model in any
pairs of drugs which have not yet been known effective or not in the 65
marketed hypertension drugs (Table S4).

As a consequence, our PDC-SGB model predicted the 17 potentialFig. 1. Distribution of the top ranked features by mRMR.
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effective drug combinations with high confidence scores larger than
0.6. A literature search in PubMed showed that 6 out of our 17
predictions have already been reported to be effective drug combina-
tions in the literature, although they have not yet been approved by the
FDA (Table S5). They may become novel effective drug combinations
for further study.

For example, the predicted drug combination of Amlodipine and
Dipyridamole which played complementary roles in the treatment of
hypertension and angina would reduce the rate of neuronal cell death
compared with the amlodipine alone in the treatment of cerebrovas-
cular stroke and in hypertensive patients (Yamagata et al., 2004).
When the propranolol was combined with the indapamide for the
treatment of hypertension, the patients had a progressive and sig-
nificant improvement in the controlled process of blood pressure. It
showed that indapamide alone controlled blood pressure in 82% of the
patients, while the combined therapy controlled blood pressure in 85%

of patients (Athanassiadis et al., 1990).

3.5. Comparison with other methods

We employed our dataset to the available method proposed by
(Zhao et al., 2011), and the performances comparison were shown in

Fig. 2. The distribution of CCI confidence score in GPS and GNS. (A) Histogram of CCI confidence score distribution in GPS; (B) Histogram of CCI confidence score distribution in GNS.

Fig. 3. ROC curves for models based on three types of machine learning methods by 10-
fold cross validation on the training data set.

Table 1
The performance of the prediction models based on different classification algorithms on
the independent test.

Algorithms AUC F1 MCC Recall Precision

Naïve bayes 0.8476 0.6222 0.5442 0.6214 0.6243
SVM 0.8815 0.8182 0.6598 0.7761 0.8662
SGB 0.9519 0.8979 0.8046 0.8693 0.9292

Fig. 4. Performance comparison of different features by SGB using 10-fold cross-
validation test.

Table 2
Performance comparison of prediction models using various combinations of features.

Feature Type AUC F1 MCC Recall Precision

Biological 0.6562 0.6296 0.2444 0.6443 0.6177
Pharmacological 0.8280 0.5260 0.4826 0.4227 0.7119
Chemical 0.7929 0.6029 0.5599 0.4972 0.7660
Biological-Therapeutic 0.8428 0.7812 0.5836 0.7466 0.8200
Biological-Chemical 0.8459 0.7573 0.5895 0.6716 0.8740
Chemical-Therapeutic 0.9033 0.6674 0.6145 0.6045 0.7471
Biological-Chemical-

Therapeutic
0.9519 0.8979 0.8046 0.8693 0.9292

Table 3
Performance comparison of prediction models with Zhao et al.'s method.

Methods AUC F1 MCC Recall Precision

Zhao et al.'s method – 0.6263 – 0.8769 0.4871
Our method 0.9519 0.8979 0.8046 0.8693 0.9292
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Table 3. Zhao et.al presented a screening method based on frequent
pattern of system molecular, biological and pharmacological data. The
features of target protein, therapy, side effect, indications and pathways
were constructed to represent drug combinations. The training set was
used to calculate the enrichment score for each feature pair while the
remaining group was used as the validation set to evaluate the
performance of the feature pairs. Besides, Zhao et al. predicted a drug
pair as an effective combination if its confidence score is above the
threshold instead of using machine learning algorithms. It is obvious
that the performance of our method is better than the Zhao et al.'s
method.

The features about the pharmacological, target and biological
pathways were employed in both Zhao et al.'s and our study. There
are three main differences between the two studies: first of all, the
confidence score of chemical interaction which was one of the key
factors for the discrimination of drug combination in our study was not
used in Zhao et al.'s study. Secondly, as for the feature vectors, Zhao
et al. used 3 features of target, indication and therapy information
which had promising performance when each of them was applied to
build the model alone, while in our method, the final feature vectors
were chosen by mRMR, one popular feature selection method. Last but
not the least, in Zhao et al.'s study, they chose a simple method
(maximization of the F1 score), whereas we employed the sophisticated
machine learning method (SGB) to build the classification model for
prediction of drug combinations.

4. Discussion

In this study, the six types of features, which were categorized into
three main groups of features (biological, pharmacological, and che-
mical properties were integrated to build PDC-SGB model for predic-
tion of effective drug combinations.

The CCI confidence score of d1 and d2 in drug combination (d1, d2)
was the individual feature show strong predictive power, which
indicated that interaction of drugs as chemicals was a key element
for classification of drug combinations. The other predictive features
with strong power were the similarity confidence scores calculated from
the first level of ATC code and the mean score of first three levels,
which means that the therapy information of drugs plays an important
role in identification of drug combinations. However, it was shown that
the performance of biological part was relatively lower, which may be
attributed by the two main factors. Firstly, the incompleteness of
molecular networks or biological pathways led to the poor quality of
biological features with noise. Secondly, the representation method we
used for constructing the biological features were too simple, and could
not be able to represent the change of biological mechanism after a
drug is taken in.

Moreover, our result showed that models based on all features
outperformed better than the model based on a random predictor,
which suggests that our features could contribute to distinguishing
whether a drug combination is effective or not. Among the features, the
feature based on Tanimoto coefficient of molecular 2D structure was
not well predictive, because the simple similarity of the chemical drug
could not reflect the complex mechanism of drug combinations.

5. Conclusions

Drug combination therapy is a promising strategy for combating
the complex diseases. In this study, we proposed a new computational
method to predict effective drug combinations by integrating biological,
chemical and pharmacological information. Among the selected fea-
tures, the CCI and therapy information of drugs showed powerful
potential to discriminate effective drug combinations from the non-
effective ones. Three different classification algorithms were applied to
build prediction models. The prediction model based on SGB gave the
best performance among the three kind of models which was selected

as our final model.
Some of the potential combinations we predicted had literature

validation, which proved the effectiveness of our model. We believed
that our method will help narrow the search space of possible drug
combinations in future. As demonstrated in a series of recent publica-
tions (Chen et al., 2013b; Chen et al., 2016b; Jia et al., 2016a; Qiu
et al., 2016c; Xiao et al., 2016) in developing new prediction methods,
user-friendly and publicly accessible web-servers will significantly
enhance their impacts (Chou, 2015), we shall make efforts in our
future work to provide a web-server for the prediction method
presented in this paper.
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