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Abstract

N6-methyladenosine (m6A) modification, as one of the commonest post-transcription modifications in RNAs, has been
reported to be highly related to many biological processes. Over the past decade, several tools for m6A sites prediction of
Saccharomyces cerevisiae have been developed and are freely available online. However, the quality of predictions by these
tools is difficult to quantify and compare. In this study, an independent dataset M6Atest6540 was compiled to
systematically evaluate nine publicly available m6A prediction tools for S. cerevisiae. The experimental results indicate that
RAM-ESVM achieved the best performance on M6Atest6540; however, most models performed substantially worse than
their performances reported in the original papers. The benchmark dataset Met2614, which was used as the training dataset
for the nine methods, were further analyzed by using a position bias index. The results demonstrated the significantly
different bias of dataset Met2614 compared with the RNA segments around m6A sites recorded in RMBase. Moreover,
newMet2614 was collected by randomly selecting RNA segments from non-redundant data recorded in RMBase, and three
different kinds of features were extracted. The performances of the models built on Met2614 and newMet2614 with the
features were compared, which shows the better generalization of models built on newMet2614. Our results also indicate
the position-specific propensity-based features outperform other features, although they are also easily over-fitted on a
biased dataset.
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Introduction

N6-methyladenosine (m6A) modification is the first internal
mRNA modification discovered [1, 2]. It is considered as one of
the commonest post-transcription modifications in RNAs and
has been founded in viruses [3, 4] and many different eukary-
otes such as yeast [5, 6], plants [7, 8], mammals [1, 9–11] and
insects [12]. m6A modification participates in a wide range of
biological functional processes [13–17] and almost affects the
entire mRNA metabolism [18–20], including splicing, transport,
translation efficiency, secondary structure, etc. It was reported
that m6A modification was associated with lots of diseases
such as thyroid tumor [21], prostate cancer [22], breast cancer
[23–25], pancreatic cancer [26, 27], leukemia [28], etc. Obviously,
the identification of m6A sites would be of great benefit for cell
biology and disease mechanism research.

Various types of methods have been developed to identify
m6A sites. Experimental approaches such as two-dimensional
thin layer chromatography [29], high performance liquid chro-
matography [30] and next-generation sequencing techniques
(e.g. m6A-seq [31] and MeRIP-Seq [32]) have been used to identify
m6A sites in mRNAs. However, these experimental methods
are too costly and time-consuming to perform genome-wide

analysis. These limitations of experimental methods may be
overcome by developing computational methods for m6A sites
identification.

Over the past few years, a variety of computational methods
[33–56] have been developed for predicting m6A sites in different
species of RNAs, such as Saccharomyces cerevisiae, Homo sapiens,
Mus musculus and Arabidopsis thaliana. Saccharomyces cerevisiae is
one of the most widely utilized model organisms in biotechnol-
ogy worldwide, and 13 computational methods [33, 34, 36, 38,
39, 42, 44, 45, 47, 48, 50–52] have been developed to predict its
m6A sites. In this study, we focused on these methods. These
models were summarized in Table 1; we noticed all the models
were built on a training dataset Met2614 [33] which was based
on the pioneering work of Schwartz et al. [57] and contains only
1307 positive examples. However, the number of m6A sites of
S. cerevisiae collected in a RNA modification database (RMBase
[58]) is over 60 000, of which 23 581 m6A sites are centered with
GAC pattern.

Our original idea is to select a representative subset to vali-
date the generalization of the available methods built on a small
dataset Met2614. We first carefully collected an independent
test set and carried out an unbiased evaluation of these pre-
dictors that have been publicly available as open access web

Table 1. A comprehensive summary of the state-of-the-art computational predictors for RNA m6A sites of S. cerevisiae

Predictor Training
dataset

Independent
test set

Feature representation Classifier Cross
validation

Web server Ref

iRNA-Methyl Met2614 None Pseudo dinucleotide composition (PseDNC) SVM 10-fold and
Jackknife

http://lin.uestc.edu.cn/
server/iRNA-Methyl

[33]

m6Apred Met1664a Met950a Chemical property with density SVM Jackknife http://lin.uestc.edu.cn/
server/m6Apred

[34]

pRNAm-PC Met2614 None Auto-covariance and cross-covariance
transformations of physical chemical
property

SVM Jackknife http://www.jci-bioinfo.
cn/pRNAm-PC

[36]

RNA-
MethylPred

Met2614 None Bi-profile Bayes; dinucleotides
composition; KNN score

SVM Jackknife None [38]

Met1664a Met950a

TargetM6A
Met2614 None Nucleotide composition; position-specific

nucleotide/dinucleotide propensity
SVM

10-fold and
Jackknife

http://csbio.njust.edu.
cn/bioinf/TargetM6A

[42]

Met1664a Met950a

M6A-HPCS Met2614 None PseDNC; auto-covariance and
cross-covariance transformations of
physical–chemical property

SVM 10-fold and
Jackknife

http://csbio.njust.edu.
cn/bioinf/M6A-HPCS

[39]

RAM-ESVM Met2614 None PseDNC; motif features; gapped K-mers SVM 10-fold and
Jackknife

http://server.malab.cn/
RAM-ESVM/

[44]

RAM-NPPS Met2614 None Position-specific condition propensity SVM Jackknife http://server.malab.cn/
RAM-NPPS/

[45]

M6APred-EL Met2614 None Position-specific nucleotide propensity;
physical–chemical properties;
ring-function-hydrogen-chemical
properties

SVM 10-fold http://server.malab.cn/
M6APred-EL/

[47]

iMethyl-
STTNC

Met2614 None Split-tetra-nucleotide-composition SVM Jackknife None [48]

iRNA(m6A)-
PseDNC

Met2614 None PseDNC SVM 10-fold http://lin-group.cn/
server/iRNA(m6A)-
PseDNC.php

[50]

BERMP Met2200a Met414a Enhanced nucleic acid composition
RF

5-fold and
10-fold

http://www.bioinfogo.
org/bermp

[51]BGRU
LR

M6AMRFS Met2614 None Dinucleotide binary encoding; local
position-specific dinucleotide frequency

XGBoost 10-fold and
Jackknife

http://server.malab.cn/
M6AMRFS/

[52]

aThe datasets are derived from Met2614, so all the datasets are not overlapped with M6Atest6540.
LR, logistic regression; SVM, support vector machine; RF, random forest; BGRU, bidirectional Gated Recurrent Unit; XGBoost, eXtreme Gradient Boosting.
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portals. As shown in Table 1, totally 11 predictors have web
services as reported in their original papers; however, two of
them, TargetM6A [42] and M6A-HPCS [39], are not open-access
now. Therefore, we tested and compared the rest nine m6A
prediction webservers in this study. An independent test set,
M6Atest6540 including 3270 positive examples, is collected from
RMBase [58]. Our comparative results indicate that RAM-ESVM
achieved the best performance on M6Atest6540; however, the
generalization and robustness of all nine methods are not good
compared with the performances on Met2614. The RNA seg-
ments in Met2614 were further compared with the segments
around m6A sites recorded in RMBase, and the results indicate
the bias of Met2614 compared with the segments recorded in
RMBase.

To further analyze if the bias of Met2614 affects the
generalization of the models, we built new datasets by randomly
selecting 1307 nonredundant positive examples from RMBase,
which was called newMet2614. Then, three different kinds of fea-
tures were extracted from the RNA segments, namely nucleotide
composition-based features, position-specific propensity-based
features and physical–chemical properties-based features.
With these features, the performances of the models built on
newMet2614 were compared with the models built on Met2614.
The results indicate that generalization of the models based
on newMet2614 is better than the models based on Met2614.
Our results also indicate the position-specific propensity-based
features outperform other features; however, they are also easily
over-fitted on a biased dataset.

Materials and methods
Datasets

The dataset Met2614 [33] contains total 1307 positive RNA
segments with experimentally verified m6A sites at the center,
which were collected from Schwartz et al.’s work [57]. In order
to fairly compare the predictive performance of different web
tools, we constructed an independent dataset, M6Atest6540,
which contains 3270 experimentally verified m6A sites and
other remaining non-m6A sites. Note that benchmark dataset
Met2614 and M6Atest6540 are mutually exclusive.

The following seven steps were conducted to create the
benchmark dataset M6Atest6540 (Figure 1): (i) collecting all RNA
segments of 51-tuple nucleotides with exactly the same RGAC
consensus motif at the center position by sliding a flexible
window along each RNA sequences transcribed from the S.
cerevisiae genome. This set of segments obtained here is called
T1. (ii) Collecting all RNA segments whose center positions
were recorded in RMBase [58], this set of segments is called
P1 because all examples are positive. Then P1 was removed
from T1 to obtain the set of segments N1, which contains all the
negative examples. (iii) A subset of P1 with ‘SupportNum’ > 15
and ‘Region’ == ‘cds’ was selected to increase the reliability of
positive examples. ‘SuppotNum’ is a term in RMBase to describe
the number of supporting experiments or studies for that
position, and ‘Region’ is another term to describe the region the
nucleotide located. This subset is called P2. (iv) CD-Hit [59] was
used to remove the redundancy [60] of all the positive examples
of P2 and Met2614 with the sequence identity cutoff set as 75%. A
total of 3270 positive examples were obtained from this step. (v)
The negative examples of Met2614 were removed from N1 to get
a new negative dataset N2. (vi) A total of 3270 negative examples
were randomly selected from N2. (vii) The 3270 positive samples
and 3270 negative samples were assembled into the benchmark

Figure 1. The flowchart for generating the benchmark dataset M6Atest6540.

dataset M6Atest6540. All the RNA segments of M6Atest6540, P1
and N1 can be found in Table S1, S2, S3, respectively.

Web-accessible prediction tools

As shown in Table 1, there are totally 13 methods for predicting
m6A sites of S. cerevisiae, and 11 of them provide web servers.
Currently, only 9 of these 11 web servers are open-access for
users to predict m6A sites, namely iRNA-Methyl [33], m6Apred
[34], pRNAm-PC [36], RAM-ESVM [44], RAM-NPPS [45], M6APred-
EL [47], iRNA(m6A)-PseDNC [50], BERMP [51] and M6AMRFS [52].
Table 1 lists the basic information of these methods. As shown in
Table 1, the validation and test datasets are all based on Met2614.
Notably, the outputs of the servers pRNAm-PC and RAM-ESVM
are color labeled, which makes it a little bit hard to collect
the results.

Features extraction for machine learning-based
predictors

In the process of training a model, it is crucial to extract
informative, discriminative and independent features for
converting the RNA sequence into the numeric vector. Among
the past studies, many features have been extracted to interpret
and keep the sequence information [44, 61–66]. In this study,
three groups of features were gathered to analyze the possible
reasons that caused the weak generalization of the web tools
and to study the effects of benchmark dataset bias on the
performances of different features for m6A sites prediction.
The three groups of features are nucleotide composition-
based features, position-specific propensity-based features
and physical–chemical properties-based features (Table 2).
The detailed descriptions of all the features can be found in
Supplementary Data.

Support vector machine

The basic idea of the support vector machine (SVM) is to
determine the optimal separating hyperplane that can correctly
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Table 2. Three groups of features that had been extracted for predicting m6A sites

Group Abbreviation Full name Dimension Reference

Nucleotide composition based

NC Nucleotide composition 4 [42]
DC Dinucleotide composition 16 [38, 42, 43, 46, 49]
TC Trinucleotide composition 64 [42, 43, 46, 49]
KSNPF K-spaced nucleotide pair frequencies 16 [46]
PseKNC Pseudo K-tuple nucleotide composition 4 + α [39, 50, 60]

Position-specific propensity based
PSNP Position-specific nucleotide propensity ξ [42, 46, 47]
PSDP Position-specific dinucleotide propensity ξ − λ − 1 [42, 46]
PSCP Position-specific condition propensity ξ − λ − 1 [45]

Physical–chemical properties based
CPD Chemical property with density 4ξ [34, 37, 40, 47, 49]
PCP Physical–chemical properties 100λm [36, 39, 47]

ξ represents the length of the RNA sequence; λ is the symbol of the intervals between two individual nucleotides in the nucleotide pair; λm is maximum values of the
λ; α is the number of the total pseudo components used to show the long-range sequence effect.

divide the training data set and have the largest interval for
linearly separable data [67, 68]. In terms of the nonlinearly
separable data, SVM maps the original data to high-dimensional
space by using the specific kernel, which transforms the
problem into linear one. Kernel functions include linear kernels,
polynomial kernels, Gaussian kernels, sigmoid kernels and so
forth. Among them, Gaussian kernels, also called Radial Basis
Function (RBF), are most commonly used [69–72], which can
map data to infinite dimensions. There are two indispensable
parameters for SVM models with RBF, which are C and gamma.
The former indicates the tolerance of the model to the error, and
the latter implicitly determines the distribution of the data after
mapping to the new feature space. As shown in Table 1, most of
the models were trained by using SVM.

Performance evaluation parameters

According to the previous related studies [73, 74], Sensitivity
(SN), Specificity (SP), Accuracy (ACC) and Matthews correlation
coefficient (MCC) are the mostly used performance evaluation
parameters for the computational predictors, which are defined
as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

SN = TP
TP + FN

SP = TN
TN + FP

ACC = TP + TN
TP + FP + TN + FN

MCC = (TP × TN) − (FN × FP)√
(TP + FN) × (TN + FP) × (TP + FP) × (TN + FN)

(1)

where, TP, TN, FP and FN represent the number of true positive,
true negative, false positive and false negative, respectively. SN
and SP show the ability of the model to correctly predict positive
samples and negative samples, respectively. Furthermore, it is
worth noting that ACC and MCC are the most important ones
of the aforementioned four metrics, because the former reflects
the overall accuracy of the predictor, while the latter signified
the overall stability.

Position bias index

Here, we introduced a position bias index (PBI) to evaluate the
bias at a specified position between two groups of sequences.

Table 3. Performance of the nine accessible RNA M6A predictors on
the dataset M6Atest6540

Prediction tools SN (%) SP (%) ACC (%) MCC

BERMP 26.54 86.76 56.65 0.167
M6AMRFS 37.13 72.11 54.62 0.099
M6APred-EL 40.83 75.38 58.10 0.173
RAM-NPPS 34.59 71.07 52.83 0.061
RAM-ESVM 59.27 64.53 61.90 0.238
pRNAm-PC 55.72 65.84 60.78 0.217
iRNA(m6A)-PseDNC 83.85 19.91 51.88 0.049
m6Apred 30.31 78.90 54.60 0.105
iRNA-Methyl 59.82 61.68 60.75 0.215

The biggest values for different evaluation parameters are shown in bold.

Suppose we have two groups of sequences with m and n
sequences of the same length, respectively; the PBI was defined
as follows:

PBI(k) =
t∑

i=1

(
Pi

1,k − Pi
2,k

)2
(2)

where k is the specified sequence position, t is the number

of nucleotide or amino acid types and Pi
g,k (g ∈

{
1, 2

})
is the

probability of the ithtype residue or nucleotide at the specified
position k of the sequence group g, which was defined as follows:

Pi
g,k = Ni

g,k/Ng (3)

where Ng (N1 = m, N2 = n) is the number of sequences in group g
and Ni

g,k is the number of ith type residue at the specified position
k of the sequence group g.

Generally speaking, the bigger the PBI is, the more biased the
corresponding position is. However, the bias is also determined
by the distribution of PBIs at the specified position.

Results and Discussion
Comparative results on the independent dataset
M6Atest6540

Our original objective of this study is to conduct a fair com-
parison of existing prediction methods with the help of an
independent dataset. We first built the independent dataset
M6Atest6540 as described in the Material and Methods section.
Then, we compared the nine existing prediction methods with
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Figure 2. The performances of different models on Met2614 and M6Atest6540.

available web servers, namely, M6APred-EL [47], RAM-NPPS [45],
RAM-ESVM [44], pRNAm-PC [36], iRNA-Methyl [33], BERMP [51],
M6AMRFS [52], iRNA(m6A)-PseDNC [50] and m6Apred [34]. The
predictive results of these methods on the independent dataset
are shown in Table 3 and Figure 2, and the predictive labels of
these methods for the RNA segments in M6Atest6540 are shown
in Table S1.

As shown in Table 3, RAM-ESVM achieved the best perfor-
mance among the nine tested predictors, with the highest ACC
of 61.90% and MCC of 0.238. pRNAm-PC and iRNA-Methyl are
the 2nd and 3rd best performers, which achieved ACC of 60.78%,
60.75% and MCC of 0.217, 0.215, respectively. Besides, BERMP
achieved the highest specificity of 86.76%, and iRNA(m6A)-
PseDNC achieved the highest sensitivity of 83.85%.

Moreover, we also tried to plot the receiver operating charac-
teristics (ROCs) curves for all the predictive results of the nine
servers; however, only six of them outputted scores or probabil-
ities. So, we only plotted the ROC curves (Figure 3) for the six
methods. The area under the curves are 0.652, 0.649, 0.638, 0.577,
0.574 and 0.533 for M6APred-EL, iRNA-Methyl, BERMP, M6AMRFS,
m6Apred and iRNA(m6A)-PseDNC, respectively, which is basi-
cally in line with the ACCs in Table 3, except M6APred-EL.

In addition, we compared the performances of these models
on their original training dataset and the independent dataset
M6Atest6540 to evaluate the generalization of these models.
Figure 2 shows the comparison results. MCCs of these models
on the training dataset Met2614 and the independent test set
M6Atest6540 were shown in Figure 2A, and it is surprising that
the generalization of most models is not good, especially those
models with high MCCs. If the difference of MCCs between the
training dataset and the independent dataset is considered as
the parameter to evaluate the generalization, the three best
performing models are iRNA-Methyl, pRNAm-PC and BERMP,
with differences of MCCs of 0.075, 0.183 and 0.245, respectively.
Because MCC is an integral parameter for model evaluation, the
sensitivities and specificities of models on the training dataset
and the independent dataset were also compared to further
explore the cause of the poor generalization. Figure 2C and D
show that, for all models except iRNA(m6A)-PseDNC, the low
sensitivity on the independent dataset is the major cause of

Figure 3. The ROC curves for the predictive results of the six servers on

M6Atest6540.

the poor generalization. For iRNA(m6A)-PseDNC, the low speci-
ficity on the independent dataset is the main reason. Com-
pared with training datasets used in other methods, the training
dataset of iRNA(m6A)-PseDNC contains different negative exam-
ples, which may explain the different causes of poor generaliza-
tion of iRNA(m6A)-PseDNC.

Analysis of the bias of the training dataset Met2614

Given that Met2614 is an early small dataset which was collected
from Schwartz et al.’s work [57], we analyzed if the bias between
the positive and negative samples in Met2614 is significantly dif-
ferent from the bias between the positive and negative samples
recorded in RMBase. By using the PBI defined in the Material
and Methods section, the position bias of the training dataset
Met2614 was analyzed. As shown in Figure 4, three positions
of the dataset Met2614, 22, 24 and 30, are substantially biased.
Intuitively, the two positions, 24 and 30, are more seriously

D
ow

nloaded from
 https://academ

ic.oup.com
/bfg/article-abstract/18/6/367/5586923 by Shanghai Jiao Tong U

niversity user on 25 D
ecem

ber 2019



372 Zhu et al.

Figure 4. The PBIs for 51 positions of the RNA segments from Met2614 and the S. cerevisiae genome.

Table 4. The statistics and parameters of the PBI distribution at
positions 24 and 30 of the length 51 sequence segment

Position Mean of PBI Std of PBI Scale
parametera

Shape
parametera

24 7.5199E-04 0.0010 0.0006 0.6827
30 0.0012 0.0010 0.0013 1.2678

aThese are the two parameters for Weibull distribution.

biased. To show if the bias is statistically significant, we focused
on these two positions.

PBIs were first calculated based on all the positive and neg-
ative examples in the whole S. cerevisiae genome. As mentioned
in the Material and Methods section, all the positive and nega-
tive examples were generated during generation of the dataset
M6Atest6540. As shown in Figure 4, the PBIs at positions 24 and
30 of Met2614 are substantially higher than the corresponding
PBIs for the whole genome.

Furthermore, 5000 different datasets were created by ran-
dom selection of 1307 positive examples and 1307 negative

examples from the genome, respectively. The PBIs at each posi-
tion of the 5000 datasets were calculated, and the distribu-
tions of PBIs at positions 24 and 30 are shown in Figure S1.
The distributions were fitted by the Weibull distribution. The
statistics and parameters of the distributions for positions 24
and 30 are summarized in Table 4. The cumulative distribution
function of these two distributions are showed in Figure S2.
Based on the fitted distribution, the P-values of PBIs at posi-
tions 24 and 30 of Met2614 were calculated to be 1.652E-16 and
1.432E-158, respectively, which proved the bias of the dataset
Met2614.

The data were further analyzed to explore the possible causes
of the bias. Firstly, the nucleotide composition of the positive
examples of Met2614 were compared with that of the positive
examples recorded in RMBase [58] at positions 24 and 30. Figure
5A shows that the nucleotide composition of positive examples
of Met2614 is substantially different from that of the positive
examples recorded in RMBase at these two positions, while
Figure 5B shows that the nucleotide composition of the negative
examples of Met2614 is similar to that of the negative examples
recorded in the genome at these two positions. Thus, the bias is
more likely to be caused by the positive examples of Met2614.

Figure 5. The nucleotide composition of positions 24 and 30 of RNA segments in Met2614 (blue) and the S. cerevisiae genome (yellow). (A) Positive examples; (B) negative

examples.
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Figure 6. The cross validation performances of the models built on newMet2614 and Met2614 with 44 features (blue, the models built on newMet2614; yellow, the

models built on Met2614). (A) The cross validation sensitivity (SEN); (B) the cross validation specificity (SPE); (C) the cross validation accuracies (ACC); (D) the cross

validation MCCs.

Figure 7. The predictive performances for M6Atest6540 by the models built on newMet2614 and Met2614 with 44 features (blue, the models built on newMet2614;

yellow, the models built on Met2614). (A) The cross validation sensitivity (SEN); (B) the cross validation specificity (SPE); (C) the cross validation accuracies (ACC);

(D) the cross validation MCCs.

Performances of the models built on Met2614 and
newMet2614 with different features

To further explore if the bias of Met2614 affects the generaliza-
tion of the models, we collected a new dataset, newMet2614,
by randomly selecting positive examples from a non-redundant
dataset based on RMBase. The newMet2614 also contains 1307
positive and negative examples, respectively. Three groups
of features as shown in Table 2 were extracted from the
RNA segments of both Met2614 and newMet2614. With each
feature, the models were built on Met2614 and newMet2614 by
using SVM, respectively. The two parameters, KernelScale and
BoxConstraint, of the MATLAB function FITCSVM were selected
by a grid search according to the results of the leave-one-out
cross validation. The range of KernelScale is from 2−10 to 26, and
the range of BoxConstraint is from 2−5 to 215. Note that all the
works for newMet2614, including the generation of newMet2614,

were repeated three times. Figure 6 shows the cross validation
results of the models on Met2614 and newMet2614, respectively.
Figure 7 shows the predictive results of the models on dataset
M6Atest6540. For the models based on newMet2614, it indicates
that the performances on M6Atest6540 are better than the cross
validation results on newMet2614; in other words, the ACCs
and MCCs on M6Atest6540 are higher than the cross validation
results (Figures 6C and D, 7C and D and Table S4). These
models show good performances on the positive examples of
M6Atest6540; in other words, the sensitivities on M6Atest6540
are higher than the cross validation results (Figures 6A
and 7A and Table S4). This is normal because the positive
examples in M6Atest6540 are typical for their experimental ‘Sup-
portNum’ > 15 (see Datasets). For the models based on Met2614,
especially the models built with position-specific propensity-
based features (Features 1–21 and 44), the performances on
M6Atest6540 are substantially worse than the cross validation
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results on Met2614 (Figures 6C and D, 7C and 7D and Table S5),
especially for sensitivities (Figures 6A and 7A and Table S5).
Intuitively, the models built with position-specific propensity-
based features are easily affected by the position bias of Met2614,
which is in line with our results.

In addition, we compared the performances of the models
based on newMet2614 with the models based on Met2614 on the
independent test set M6Atest6540. Figure 7C and D shows that
the models built on newMet2614 outperform the models based
on Met2614; in other words, the ACCs and MCCs of the models
based on newMet2614 are higher than the corresponding values
of the models based on Met2614; these values are also higher
than the corresponding values of the nine previous developed
models. Although the models based on newMet2614 show better
generalization than the models based on Met2614, it is better to
use a large dataset to build the models to predict RNA m6A of S.
cerevisiae.

Moreover, the ratio of m6A sites and non-m6A sites in
both Met2614 and M6Atest6540 is set to 1.0, which creates
the balanced datasets; however, there are more non-m6A
sites in the genome than the m6A sites realistically. In other
words, the datasets for this classification problem should be
imbalanced. Random under-sampling is one of the ways to
solve the imbalanced learning problem; however, the important
information of negative examples may be lost, and the model
may be easily to predict more examples as positive, such that
the sensitivity will be overestimated. So, other methods such as
informed under-sampling, cost-sensitive learning and kernel-
based method could be used to deal this problem.

Conclusion
In this study, a benchmark dataset M6Atest6540 was compiled to
evaluate and compare the performances of nine available meth-
ods for predicting m6A sites. Most of the methods performed
substantially worse on the independent dataset M6Atest6540
than on the training dataset Met2614. Note that the Met2614 is
a benchmark dataset used for most method building, and this
dataset is a small dataset based on the early work of Schwartz
et al. [57]. Further analysis shows that Met2614 is a biased dataset
compared with the examples recorded in RMBase. In addition,
the impact of the dataset bias on the generalization and robust-
ness of models built on different features was further analyzed.
The position-specific propensity-based features were found to
be easily over-fitted on a biased dataset. Due to the more data
we can obtain for RMBase, it is better to use a large benchmark
to build RNA m6A sites prediction models of S. cerevisiae. And
other kinds of modification [75, 76] would be studied in the
future work.

Key Points
• We comprehensively review a variety of existing com-

putational methods for the prediction of RNA m6A sites
of S. cerevisiae and conduct a comparative study of avail-
able web servers.

• Benchmarking results demonstrate the substantially
worse generalization of most of the nine available m6A
prediction servers compared with the performances
reported in the original papers.

• A PBI was introduced to analyze the possible biased
positions between two sets of sequences. And the sta-

tistical analysis demonstrates that the widely used
dataset Met2614 is significantly biased compared with
the examples recorded in RMBase.

• The performances on M6Atest6540 indicate that the
models based on newMet2614 that was randomly
selected from RMBase outperform the models based on
Met2614.

Supplementary Data
Supplementary data are available online at https://academic.
oup.com/bfg.
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