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Theoretical Studies of Intracellular 
Concentration of Micro-organisms’ 
Metabolites
Hai-Feng Yang1, Xiao-Nan Zhang2, Yan Li3, Yong-Hong Zhang  4, Qin Xu1 & Dong-Qing Wei1

With the rapid growth of micro-organism metabolic networks, acquiring the intracellular concentration 
of microorganisms’ metabolites accurately in large-batch is critical to the development of metabolic 
engineering and synthetic biology. Complementary to the experimental methods, computational 
methods were used as effective assessing tools for the studies of intracellular concentrations of 
metabolites. In this study, the dataset of 130 metabolites from E. coli and S. cerevisiae with available 
experimental concentrations were utilized to develop a SVM model of the negative logarithm of 
the concentration (-logC). In this statistic model, in addition to common descriptors of molecular 
properties, two special types of descriptors including metabolic network topologic descriptors and 
metabolic pathway descriptors were included. All 1997 descriptors were finally reduced into 14 by 
variable selections including genetic algorithm (GA). The model was evaluated through internal 
validations by 10-fold and leave-one-out (LOO) cross-validation, as well as external validations by 
predicting -logC values of the test set. The developed SVM model is robust and has a strong predictive 
potential (n = 91, m = 14, R2 = 0.744, RMSE = 0.730, Q2 = 0.57; R2

p = 0.59, RMSEp = 0.702, Q2
p = 0.58). 

An effective tool could be provided by this analysis for the large-batch prediction of the intracellular 
concentrations of the micro-organisms’ metabolites.

Metabolic engineering has been widely used to raise the outputs of many significant small chemicals in different 
industrial and daily products, such as food, beverages, medicine and even enzymes. No matter these molecules 
are natural or synthesized, in order to increase the metabolic flux of the target molecules1, intracellular metab-
olism should be studied quantitatively. There are a large amount of experimental methods for identifying both 
metabolite concentrations and flux direction with the rapid development of high-throughput LC-MS technology 
and other analytical technologies. However, as the intracellular concentration of most metabolites is quite low (at 
the level of micro-mole), it is difficult to determine them by current precise analytical instruments2, especially in 
mass determination. It is still a huge challenge for experimental measurements in microenvironment, especially 
in microorganism cells. On the other hand, to enrich the intracellular metabolites is still quite difficult and may 
decrease the accuracy of measurement. Recently, there are an increasing number of computational and math-
ematical models for simulations of the cellular metabolism in metabolic engineering and synthetic biology3–6, 
which require the metabolites’ concentrations as basic parameters. In addition, metabolite concentration can 
also be used as a criterion for antibacterial discovery7, which further increases the demand for concentration 
determination.

However, few theoretical methods have been developed by far for prediction of the intracellular concentra-
tions. As well known, absolute metabolite concentration is a bridge to a quantitative understanding of cellular 
metabolism, as concentrations affect both the free energies and rates of metabolic reactions8, 9. Commonly, based 
on the second law of thermodynamics, establishing a theoretical model requires quantitative information like 
metabolite concentration or metabolic fluxes, which are always interrelated. According to thermodynamics laws, 
a chemical reaction follows the Van’t Hoff equation as below (Equation 1),
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∆ = ∆ +θG G RT lnQ (1)

where ΔG and ΔGθ are the non-standard and standard Gibbs free energy change of the reaction, and Q is the 
reaction quotient, i.e., the ratio of the chemical activities of products and reactants within the compartment where 
the reaction is occurring9. This equation dictates that net flux occurs in the reaction direction with ΔG < 0. Thus, 
metabolic fluxes direction is fundamentally and directly affected by absolute metabolite concentration. According 
to the relationship between metabolite concentrations and flux directions, unknown flux directions can be pre-
dicted from metabolite concentrations, vice versa, unknown metabolite concentrations can be predicted from 
known flux directions. Kummel et al. established a network embedded thermodynamic (NET) method to predict 
intracellular metabolite concentration, but the NET method needs Gibbs free energy of the metabolic reaction as 
the prior condition, which greatly limits its application scope because of the difficulty in Gibbs free energy meas-
urement10. Hamilton et al. developed a method named thermodynamics-based metabolic flux analysis (TMFA), 
which is the developed from the general flux balance analysis and thermodynamic constraints analysis11. The 
TMFA method can predict an approximate range of metabolite concentrations based on relatively few informa-
tion, which is more suitable for qualitative analysis rather than accurately quantitative analysis.

At the same time, prediction of metabolites’ concentrations was also attempted by statistical methods. With 
the rapid development in microorganism metabolic network, the relationship between metabolic network and 
chemical reactions was explored after reconstructing metabolic network. Since most biological metabolites are 
small molecules and metabolic processes are basically chemical reactions, to some extent, the metabolic network 
organization has chemical basis, which was discussed by Zhu et al. with combination of bioinformatics and chem-
informatics8. It is possible to develop theoretical methods for predicting the intracellular concentration. Bar-Even 
et al. found that the hydrophobicity and charge of metabolites has great influence on the intracellular concentra-
tion of metabolites, and initially established a rough linear model for metabolites concentration prediction based 
on physical and chemical properties for the first time12. In the following researches, Zhu et al. found that there is 
a certain correlation between biological phenotype and metabolic network topology, in addition to physical and 
chemical properties, based on which a support vector machine model was established to predict the intracellu-
lar metabolite concentrations8. However, while the squared cross-validation correlation coefficients (Q2) of this 
model reached 0.59 in the internal validation in E. coli, it had no external validation with independent test set.

In addition to molecular properties, it might be helpful to utilize information of metabolites’ biological func-
tions in the concentration prediction, since the functions are generally affected by the biological characters like 
the intracellular concentrations. However, in the earlier studies8, 10–12, less biological information was employed 
to predict metabolite concentrations. In this paper, in addition to molecular descriptors of structural and physic-
ochemical properties, topological parameters in organism specific metabolic network and a novel type of param-
eters describing the involvement of a metabolite in specific pathways were utilized to improve the predictive 
performance, with discussion on their biological meaning. All these variables were applied to variable selection 
using genetic algorithm (GA)13–15 and an additional optimization procedure. Incorporated with the support vec-
tor machine algorithm16–20, the variable set was iteratively optimized to build the final prediction model21 which 
has the best performance in internal validation. The final model was then applied to the external validation in the 
test set, which was randomly selected from a dataset containing the experimental concentrations of 130 metab-
olites from two kinds of microorganisms, 93 metabolites from E. coli9 and 37 metabolites from S. cerevisiae22.

Results
Variable selection and interpretation. Variable selection. After a preprocessing, the variable selection 
is performed on 1669 variables step by step, including three rounds of GA selection and a further optimization 
procedure. The results are evaluated by both 10-fold cross-validation and leave-one-out (LOO) validation, as 
shown in Table 1. In the first five rounds of selection, the Root Mean Square Error (RMSE) is decreasing and the 
correlation coefficient (Q2) between computational and experimental values is increasing. Until in the fifth round, 
when the number of selected variables m is lowered to 14, the best performances are obtained both in 10-fold 
cross-validation with RMSE = 0.741, Q2 = 0.55 and in LOO method with RMSE = 0.730, Q2 = 0.57. In the next 

Round
Number of 
variables(m)

10-fold cross-
validation

Leave-one-
out(LOO)

RMSE Q2 RMSE Q2

Initial 1669 1.120 0 1.103 0.02

1 697 1.053 0.13 1.050 0.13

2 258 0.973 0.23 0.960 0.25

3 70 0.912 0.33 0.898 0.35

4 18 0.771 0.52 0.769 0.52

5 14 0.741 0.55 0.730 0.57

6 13 0.772 0.52 0.758 0.54

7 12 0.786 0.50 0.756 0.54

8 11 0.780 0.51 0.751 0.55

9 10 0.853 0.41 0.828 0.45

Table 1. The variable selection.



www.nature.com/scientificreports/

3SCiEnTifiC RepoRTS | 7: 9048  | DOI:10.1038/s41598-017-08793-2

three rounds, the performances of the models are not improved, but drop a little bit. And in the ninth round, the 
dramatic increase in RMSE to 0.853 and decrease in Q2 to 0.41 in 10-fold cross-validation, as well as to 0.828 and 
0.45 in LOO respectively, convinced us to stop further attempts.

Generally the variables’ number is fewer in a model, the model quality is much better. However, taking into 
account the number of training set samples, 91 is much bigger than the number of variables, 14, finally 14 descrip-
tors are picked out as the variable set for the final SVM model described below. Detailed information about the 
14 variables is shown in Table 2.

Variable interpretation. In Table 2, there are three types of variables in the optimal variable set, including top-
ological parameters of metabolic networks, molecular descriptors and metabolic pathway descriptors. It is obvi-
ously that molecular chemical descriptors are the main parts in the optimal variable set. In order to quantitatively 
measure the importance of each variable to the model, we calculate the correlation coefficients between each 
variables and –logC in Table 3, sorting by their absolute values. Because MPF is a categorical variable, here its cor-
relation with –logC is calculated by Spearman Correlation Coefficient, while the other 13 variables are evaluated 
by Pearson Correlation Coefficient.

As we can see from Tables 2 and 3, chemical character is still the most significant factor for the intracellular 
concentration of metabolites. The molecular descriptors in the optimal variable set are mainly related to four 
types of molecular physical-chemical properties: 1) molecular polarity, such as BCUT_SLOGP_2 and ClogP; 
2) partial charge distribution, such as BCUT_SMR_3, GCUT_PEOE_1 and RPCG; 3) subdivided surface areas, 
such as SLOGP_VSA9, PEOE_VSA + 0, vsa_hyd; 4) geometric structure of molecules, such as opr_nring, 6men_
rings_molecules. In these descriptors, 6mem_rings_molecules, RPCG and ClogP also appeared in Zhu’s model, 
while the other descriptors are also similar to those in the models of Zhu et al.8 or Bar-Even et al.12.

Topological parameter is another type of variable in the optimal variable set. Different with the Zhu’s variable 
set8, in addition to the parameter Degree, this optimal variable set contains a metabolic network topology variable 
named as Clustering-Coefficient, which represents the density of the network around the specific nodes. In graph 
theory, Clustering-Coefficient reflects the tendency of nodes to cluster together. If one node is connected with n 
other nodes, Clustering-Coefficient is the ratio of the number of edges between n nodes and the maximum num-
ber of potential maximum edges (Cn

2)23 (Equation 2).

=
×

−
Clustering Coefficient 2 number of edges between n nodes

n(n 1) (2)

In metabolic biology, Clustering-Coefficient in metabolic network represents the concentration of meta-
bolic reactions around the specific metabolite, which means that the more intensive the biochemical reactions 
around the metabolites, the higher concentrations of the metabolites are often required to ensure that they won’t 
be the bottleneck of the surrounding metabolic reactions. Correlations between metabolite concentration and 
Clustering-Coefficient in the dataset are shown in Fig. 1.

As in Fig. 1, the concentrations of the 93 metabolites of E. coli and the 37 metabolites of S. cerevisiae were 
roughly equally separated into three groups as Low, Medium, and High (26 concentrations in the range of 
1.0 × 10–7–3.0 × 10−5 mol/L, 33 concentrations within 3.0 × 10−5–5.5 × 10−4 mol/L and 34 concentrations within 
5.5 × 10−4–1.0 × 10−1 mol/L for E. coli, as well as 13 concentrations of 2.0 × 10−5–3.5 × 10−4 mol/L, 13 concentra-
tions within 3.5 × 10−4–1.5 × 10−3 mol/L and 11 concentrations within 1.5 × 10−3−1.0 × 10−1 mol/L for S. cerevi-
siae, respectively). In both figures, the average metabolite concentrations are positively correlated with the average 
Clustering-Coefficient of the group of metabolites. Combining with the correlation coefficients in Table 3, it was 
indicated that Clustering-Coefficient may be a good variable to help improve the prediction model.

Name Type Description

Clustering-Coefficient Topological parameter Clustering coefficients of nodes

Degree Topological parameter Degree of nodes

BCUT_SLOGP_2 Molecular descriptor LogP BCUT (2/3)

BCUT_SMR_3 Molecular descriptor Molar refractivity BCUT (3/3)

GCUT_PEOE_1 Molecular descriptor PEOE charge GCUT (1/3)

SlogP_VSA9 Molecular descriptor Bin 9 SlogP (0.40, 10]

PEOE_VSA + 0 Molecular descriptor Total positive 0 vdw surface area

PEOE_VSA + 5 Molecular descriptor Total positive 5 vdw surface area

Vsa_hyd Molecular descriptor VDW hydrophobe surface area

Opr_nring Molecular descriptor Oprea ring count

6mem_rings_molecules Molecular descriptor Number of 6 membered rings

RPCG Molecular descriptor Ratio of most positive charge on sum total 
positive charge (Relative positive charge)

ClogP Molecular descriptor Partition coefficient octanol/water

MPF descriptor Metabolic pathway Five Metabolic Pathways’ Features descriptor

Table 2. The selected 14 variables of the optimal variable set.
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The third type of variable is metabolic pathway variable. As in Table 2, there is one selected variable named as 
Metabolite Pathways’ Feature descriptor (MPF descriptor), which describes the participation of a metabolite in 
five metabolic pathways in microbe metabolic network, that is, Map00625, Map00626, Map02020, Map03070 and 
Map04122. There are 14 metabolites involved in these pathways, with detailed information listed in Table S1 (see 
Supplementary information S1). In these five metabolic pathways, Map00625 represents the degradation pathway 
of chloralkane and chloroalkene, Map00626 represents the degradation pathway of naphthalene, Map02020 and 
Map04122 represent the pathways of signal transduction, and Map03070 represents the secretary pathway of 
bacteria. The five pathways selected are non-core metabolic pathways, that is, they are distinct from the core met-
abolic pathways that generally refer to the tricarboxylic acid cycle, such as glucose synthesis and decomposition.

The reason why the pathway variables of these five non-core pathways are retained in the final model might be 
explained by the deviation of the concentrations and polarities of the 14 metabolites in these pathways from the 
average level. In microbe metabolic pathways, the concentration and the polarity of the metabolites are two key 
points. In intracellular micro-environment, the concentration and polarity of the metabolites are generally posi-
tively correlated24, although not strictly linear. This positive correlation was shown in Fig. 2. The 130 metabolites 
were first divided into 12 groups according to their values of CLogP with the bin width of 0.5, then the average 
values of CLogP and –logCe of the 12 groups were plotted, where CLogP is the metabolites’ partition coefficient 
in octanol/water directly correlated to their molecular polarity, while –logCe is the negative logarithm of their 
experimental intracellular concentrations. As shown in Fig. 2, the metabolite intracellular concentrations are 
positively correlated to CLogP, with R2 as high as 0.838, suggesting that metabolites more polar and thus more 
water-soluble may have higher intercellular concentrations. Therefore, the metabolite concentration could be 
predicted by chemical basis, at least partially.

In Table 4, the average CLogP of the 14 selected metabolites is −2.98, slightly lower than the average value 
of the 130 metabolites, −2.85, which indicates that the average polarity of the 14 metabolites is slightly higher 
than that of all 130 metabolites. On the other hand, in Table 4 the average -logCe of the 14 metabolites in E. coli 
and S. cerevisiae are 2.77 and 2.32, respectively, much smaller than the overall average value as 3.57 of all the 130 

Variables correlation coefficients

BCUT_SLOGP_2 MPF
0.446

−0.437

Degree −0.325

6mem rings Molecules 0.296

opr_nring 0.296

ClogP 0.267

GCUT_PEOE_1 0.235

Clustering Coefficient −0.124

vsa_hyd 0.099

RPCG −0.091

PEOE_VSA + 0 −0.075

PEOE_VSA + 5 −0.062

SlogP_VSA9 −0.035

BCUT_SMR_3 −0.024

Table 3. Correlation coefficients between selected variables and−logC.

Figure 1. Correlation between metabolite concentration and Clustering-Coefficient in (a) E. coli; and (b) S. 
cerevisiae.

http://S1
http://S1
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metabolites in both organisms. It means that these 14 metabolites may have a lower polarity, but a higher concen-
tration. This is a good example that the positive correlation between polarity and concentration of metabolites 
may vary in certain pathways of metabolites, such as the 14 metabolites in the five pathways of MPF descriptor. 
Therefore, this MPF descriptor can provide a contribution to complement the concentration prediction as an 
important variable.

SVM regression model. The prediction model of metabolite concentration employing 14 descriptors was 
built by SVM regression25 based on 91 samples in training set, and then it was tested by the independent test set 
containing 39 samples. The confidence interval of 20 randomized trials is: R2 = 0.75 ± 0.02, RMSE = 0.746 ± 0.020, 
Q2 = 0.54 ± 0.05; R2

p = 0.56 ± 0.05, RMSEp = 0.744 ± 0.041, Q2
p = 0.53 ± 0.05. The performance of the model is 

evaluated by randomly choosing one result as in Table 5. It is shown that with the sample size n = 91 and the fea-
ture size m = 14, the SVM regression model results in Q2 = 0.55 and RMSE = 0.74 in the 10-fold cross-validation 
and Q2 = 0.57, RMSE = 0.730 in the LOO cross-validation, which both suggest a good stability. Moreover, in 
the external validation by the independent test set, the predicted vs experimental –logC values have Q2

p = 0.58, 
R2

p = 0.586, RMSE = 0.702, which also proved the good reliability of this model. In order to further demonstrate 
the robustness of the model, the variance of prediction error in the LOO cross-validation and the independent 
test was calculated as 0.53 and 0.52, respectively. Compared with previous studies, our model was further testified 
by external validations and showed good reliability.

In addition, 11 metabolites from Bacillus subtilis26, which did not exist in our training set, were used to test 
the generalization ability in other micro-organisms, getting a good result of RMSE = 0.71. However, this data 

Figure 2. Correlations between concentration and CLogP of 130 metabolites (R2 = 0.838).

Name

–log Ce

CLogPE. coli S. cerevisiae

Glutamate 1.02 1.09 −2.69

ATP 2.02 2.47 −4.55

Aspartate 2.37 1.80 −2.41

Glutamine 2.42 1.09 −3.38

Citrate 2.71 2.83 −2.00

Malate 2.77 2.77 −1.52

Acetyl-CoA 3.22 NA −3.54

Succinate 3.24 3.47 −0.53

Succinyl-CoA 3.63 NA −3.94

Fumarate 3.94 2.78 −0.17

S-adenosyl-L-methionine 3.74 NA −5.08

Alanine 2.59 1.61 −3.12

GTP 2.31 3.23 −5.53

D-Glucose 6-phosphate NA 2.43 −3.28

Average of 14 above metabolites 2.77 2.32 −2.98

Average of 130 metabolites 3.57 −2.85

Table 4. The deviation of the concentrations and polarities of the 14 metabolites in the five pathways included 
in the MPF descriptor. −log Ce is the negative logarithm of the corresponding concentration in E. coli and S. 
cerevisiae. NA means no data available.
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set comes from a different experimental protocol that may lead to some systematic error in the concentration 
prediction.

The plot of the predicted vs. experimental –logC values is shown in Fig. 3, where both the sample of the train-
ing set as shown in black circles and those of the test set as shown in red squares are distributed near the diagonal, 
suggesting that the SVM regression model fits well and may estimate the intracellular metabolite concentrations 
with a good reliability.

The distribution of prediction errors is shown in Figure S1 (see Supplementary information S1). The predic-
tion errors in both training set and test set obeys normal distribution approximately, which indicates that good 
performance of our model is not due to over-fitting.

Application domain of the SVM model. In this paper, leverage method was used to define the applica-
tion domain of the prediction model27, which was shown as Williams plot in Fig. 4. Due to many uncertainties 
in biological experiments, the range of reliable data could be allowed to reach 3 times of standard deviation. In 
this figure, the application domain is established as a squared area within ± 3 standard deviations and a leverage 
threshold h* of 3 × 14/91 = 0.46. From Fig. 4, most black circles (they represent compounds in the training set) 
are located in the middle-left and lower-left region while the magenta triangles (test set samples) are all in the 
middle-left. This distribution means the leverages of all data are acceptable, and only a small part of the training 
set data is outside the limit of 3 standard deviations. These training compounds may cause modeling results 
worse and must be employed carefully. Fortunately, they are in the training set and may not affect model quality 
significantly. It can be illustrated that this SVM model has good prediction ability to the compounds in test set.

Discussion
According to the results shown above, based on GA variable selection, 14 variables were picked out to build the 
final prediction model. The metabolite concentrations oscillate during different phases of life. For example, dur-
ing the life cycle of a yeast cell the amplitude of metabolite oscillation is usually within 10-fold, with a median of 
2.4-fold28. Therefore, if the prediction error of –logC is less than 1, it may be accepted in predicting intracellular 
metabolite concentration. In the earlier study by Zhu and his coworkers8, the model has sample size n = 80, 
R2 = 0.683, Q2 = 0.59, RMSE = 0.729, as in Table 5. On the other hand, our SVM model has more training set 
samples n = 91, and good fitting ability with R2 = 0.740, Q2 = 0.57, RMSE = 0.730. Furthermore, our model was 
validated by predicting an independent test set containing 39 metabolites, and resulted in R2

p = 0.586, Q2
p = 0.58, 

RMSEp = 0.702.

Training set Test set (n = 39)

Number 
of samples 
(n) R2

10-fold LOO

R2
p RMSEp Q2

pRMSE Q2 RMSE Q2

Zhu’s model8 80 0.683 0.729 0.59

Bar-Even11 60 0.43 0.43

This model 91 0.744 0.741 0.55 0.730 0.57 0.586 0.702 0.58

Table 5. Predictive performance among internal and external validation.

Figure 3. Plot of the −logC values predicted by the SVM model (−logCp) vs. those observed (−logCe).

http://S1
http://S1
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When randomly separated the metabolites into the training sets and test sets, there may be some overlaps of 
metabolites in both E. coli and S. cerevisiae. In order to evaluate the possible influence from same metabolites in 
both training and test sets, we reconstructed the models with a non-overlap strategy that the same molecules from 
E. coli and S. cerevisiae were divided both into the training set, or both into the test set, so as to prevent possible 
similarity between the training set and the test set. As shown in the Table 6, the reconstructed model kept compa-
rable good performances both in the training set and in the test set, indicating that the evaluation performance is 
not merely due to training-test-set similarity.

In addition, compared with Zhu’s model, our model has a strong advantage in generalizability to different 
organisms. It is well known that the distributions of metabolite concentrations in different species are quite differ-
ent, so they are difficult to be completely determined by the degree of metabolic networks only. Zhu’s model was 
only based on the dataset of E. coli, so their model may only fit well for this species. When the 130 compounds 
in the data sets including both E. coli and S. cerevisiae were put into one model together using Zhu’s modeling 
method, the Q2 of the reconstructed model could only achieve 0.46 in training set and 0.44 in test set, both less 
than 0.50. Our SVM model results in Q2 as 0.57 for the training set and 0.58 for predicting the test set, that is, 
greater power in fitness and reduced predictive error.

Obviously, the performance of Zhu’s model could be explained well mainly by one network topological param-
eter, Degree. Beside Degree, Clustering-Coefficient is another important topological variable, which represents 
the density of metabolic reactions around the specific metabolites. In our predictive model, Clustering-Coefficient 
was found to also give some effective information of the differences between the distributions of metabolites’ con-
centrations in different organisms, and may help to improve the performance of the predictive model.

Furthermore, in this paper metabolic pathway variables were employed to predict metabolite concentration 
and to explain the complex relationship between the intracellular metabolite concentrations and molecular phys-
icochemical properties. In the evolution, energy metabolism, synthesis and decomposition pathways are most 
critical. The metabolites in these core pathways generally have higher polarity to reach relative higher concentra-
tions in the hydrophilic environment of plasma. However, some other intracellular metabolic pathways involving 
different hydrophilic environment, such as signal transduction pathways and the pathways of degradation of 
harmful substances in the environment, are also important for organisms to adjust the metabolism to external 
environment. In these non-core pathways, metabolites still need a relatively high concentration to maintain their 
biological function, despite their lower polarity. For example, in signal transduction, metabolites need lower 
polarity to pass through the phospholipid bilayer24, 29, 30. Therefore, as shown in Fig. 2 and Table 4, our results 
indicated that the positive correlation between polarity and concentration of metabolites is not strictly linear, 
and MPF descriptor could be an important variable to help explain this deviation. With the metabolic pathway 
variables considered, our SVM model may better support for the development of metabolic engineering and 
synthetic biology.

Figure 4. Williams plot of standardized residual versus leverage.

Separation 
Strategy

Training set Test set

R2

10-fold LOO

R2
p RMSEp Q2

pRMSE Q2 RMSE Q2

non-overlap 0.77 0.72 0.57 0.71 0.59 0.55 0.74 0.54

random 0.74 0.74 0.55 0.73 0.57 0.59 0.70 0.58

Table 6. Comparison of performances between the non-overlap and the random strategy.
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Materials and Methods
The procedure to develop the models between the metabolite intracellular concentrations and the descriptors 
includes data collection, metabolic network reconstruction, descriptor calculations, variable selections, model 
development and validation, and test on application domain, as shown in Fig. 5.

Metabolic network reconstruction of organisms. Metabolic network of organisms was reconstructed 
by Python-2.7 scripts30–32. In the network reconstruction, the metabolic network was automatically reconstructed 
based on the reactant pairs from KEGG reaction database33, which were screened by two criteria. Firstly, reactant 
pairs which did not appear in the metabolic pathway of the organism should be deleted. Secondly, reactant pairs 
containing metabolites with unspecified residues were deleted31, 32. In the reconstructed metabolic network, each 
node represents a metabolite while each edge represents a substrate-product relation, which was introduced in 
details by Ma et al.32. The reconstructed metabolic network of E. coli was consisted of 1002 nodes (metabolites) 
and 1424 undirectional edges (substrate-product relations), while the one of S. cerevisiae was consisted of 2563 
nodes (metabolites) and 3123 undirectional edges (substrate-product relations).

Descriptors calculation. The metabolic network topology parameters were calculated by Network Analyzer 
Plugin in Cytoscape-3.3.034, 35. And 1850 molecular descriptors were calculated by E-DRAGON36–38. These molec-
ular descriptors involve different categories including topological, geometrical, electrostatic and other physico-
chemical molecular properties of the metabolites.

Pathway variables were chosen as another type of descriptors work to describe the involvement of the metab-
olites in specific metabolic pathways. There are 116 pathways in E. coli and S. cerevisiae in the KEGG pathway 
database33. If one metabolite presents in one of these metabolic pathways, its variable for this pathway is defined 
as 1, otherwise it is recorded as 0. After removing pathway variables that have the same values for almost all 
metabolites in our dataset described below, the remaining variable set consists of 81 pathway variables which are 
subject to further variable selection as below. The metabolic pathway variables remaining after variable selection 

Figure 5. Flow chart of the model development.
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were used to define a new variable, named as MPF (Metabolite Pathways’ Feature) descriptor. If one metabolite 
participated in any one reaction among the metabolic pathways corresponding to the selected pathway variables, 
the MPF descriptor of this compound was defined as 1, otherwise it is defined as 0.

Variable selection. Variable selection was performed prior to the construction of the predictive model in 
order to eliminate redundant variables and pick out the optimal ones39. Due to the absence of some type of atoms 
in all the metabolites of our dataset, some molecular descriptors’ values might be zero or a constant for all mol-
ecules, and these descriptors were abandoned. Then the descriptors with a standard deviation of <0.001 should 
also be abandoned because of too little statistical meaning. After the preprocessing procedures, 1669 descriptors 
were retained from the 1977 descriptors.

The 130 metabolites are randomly separated into a training set of 91 samples and a test set of 39 samples40. The 
confidence intervals of model results are calculated with 20 times.

Then genetic algorithm (GA)13 is used for variable selection for the training set. Three rounds of selections 
by GA were executed. In each round of variable selections, the population size of each generation is 100, the 
maximum generation is 100, and the mutation rate is 0.01, and the optimization objective is RMSE (Equation 3) 
of each individual in LOO cross-validation. Genetic algorithm was performed by applying the genalg package in 
R-3.30. After this step, 70 descriptors were retained.

∑= −
n

Y YRMSE 1 ( )
(3)exp pred

2

An additional optimization procedure41 is applied to filter out irrelevant variables from the 70 descriptors for 
the training set. In this method, one descriptor which had been deleted from the original 1669 descriptor set was 
added back into the 70-variables set to construct a new (70 + 1)-variables set, or one descriptor was deleted from 
these 70 descriptors to obtain a new (70 − 1)-variables set. When one descriptor was added to or deleted from 
the variable set, the effect of the change was evaluated according to the RMSE (Equation 3) obtained in the LOO 
cross-validation42.

If the change in variable set leads to less RMSE, the change will be accepted, otherwise it will be rejected, until 
the minimum RMSE emerged. Then, the variable set in the final model with minimum RMSE is extracted as the 
optimal modeling variable set41.

Model development and validation. A model between the transformed metabolite concentration val-
ues(Y = –logC) and the optimal set of descriptors for the 91 samples in the training set was developed by the 
support vector machine (SVM) regression method, using the kernlab package in R43, including model training, 
evaluating and predicting. Radial basis kernel function exp {−γ|μ − ν|2} was chosen to construct a ε-SVR model. 
The parameters were trained by using grid search over default parameter ranges and the best parameters were 
obtained as follows: gamma = 0.01, epsilon = 0.20, cost = 11.

The model is internally validated by two methods, including LOO cross-validation and 10-fold 
cross-validation. In these two methods, the squared cross-validation correlation coefficient (Q2) (Equation 4) is 
employed for the cross-validation16, 44.

= −
∑ −

∑ −
Q

Y Y

Y Y
1
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( ) (4)
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exp mean

2
2

2

The model developed from the training set was then externally validate by predicting the –logC values of the 
39 metabolites in the test set. And in addition, 11 metabolites from Bacillus subtilis26 were hired as a new test set 
to execute an external validation. The predictive correlation coefficients (Q2

p) and RMSE (RMSEp) are employed 
to evaluate the predictive power of the model.

Application domain. The Williams plot for the SVM model is defined by leverage45–47, hi (Equation 5), to 
illustrate the model’s application domain.

= = …−x X X x i nh ( ) ( 1, , ) (5)i i
T T

i
1

where X is the n × k matrix of k variable values for n training set metabolites, and xi is the ith row vector of X. The 
superscript “T” refers to the matrix/vector transpose. The control leverage h* is set as 3k/n.

Conclusions
Combining chemical descriptors, topological parameters and metabolic pathways descriptors, a machine learning 
model can be constructed to predict the metabolite concentration with relative reliability. 14 optimal descrip-
tors are effectively derived from a great amount of DRAGON descriptors and metabolic pathways descriptors 
according to Q2 and RMSE values by the GA variable selection procedures. These descriptors were significant 
in construction of a SVM regression model, based on a data set of 130 metabolites of the E. coli and S. cerevisiae, 
which was randomly separated into a training set of 91 samples and a test set of 39 samples. The results of internal 
LOO and 10-fold cross-validation indicated that the model is robust, while the external validations on the test set 
showed good prediction powers. Therefore, this SVM model might be useful for prediction of the intracellular 
metabolites concentration with a well-defined application domain when experimental values are difficult to be 
acquired.
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