
Trends
Higher fungi are the most plentiful pro-
ducers for natural products. Those nat-
ural compounds including terpenoids
have a wide range of bioactivities,
which are significant to pharmaceutical
and healthcare industries.

Higher fungi are strong candidates for
the production of native natural pro-
ducts, owing to their inherently tolerant
and suitable expression systems.

Owing to a mysterious genetic back-
ground and immature genetic manipu-
lations, higher fungi have long been
overlooked by the academia and indus-
trial community. With the help of different
levels of ‘omics’ investigations and the
development of genetic manipulation
tools, the construction of ‘smart’
higher-fungus cell factories for useful
natural product production (e.g., terpe-
noids) is believed to be a highly desirable
and promising research direction.
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Higher fungi with greater than 70 000 species are regarded as a rich source of
various natural compounds including terpenoids, the production of which rep-
resents a wide range of interest in pharmaceutical and healthcare industries.
This review summarizes the current knowledge of terpenoids synthesized by
higher fungi, and highlights the current state-of-the-art regarding genetic
manipulation of higher fungi. As the focus, this article will discuss the most
recent approaches enabling native hosts and heterologous microbes to effi-
ciently produce various terpenoids, especially with regard to the construction of
‘smart’ higher-fungus cell factories. The merits and demerits of heterologous
versus native hosts as cell factories will also be debated.

Higher Fungi and Their Useful Terpenoids
Higher fungi (also known as macrofungi), including divisions of Ascomycetes, Basidiomycetes,
and Deuteromycetes, can form easily observed and collected sporocarps as a result of septate
hyphae development. They have been recognized as an abundant and important group of
organisms to humans for centuries. These fungi are of particular interest not only because of their
importance as food resources but also as traditional medicines [1]. For survival in unfavorable
environments, higher fungi are able to synthesize diversified functional secondary metabolites.
Until now, many bioactive compounds from higher fungi have been isolated, identified, and
characterized with various biological and pharmacological activities, including terpenoids,
heterocyclics, polysaccharides, and polyketides [2].

Displaying a wide range of biological activities, terpenoids, which contain sesquiterpenoids,
diterpenoids, and triterpenoids, are the most attractive metabolites among the myriad of natural
products from higher fungi (Table 1). Irofulven (or 6-hydroxymethylacylfulvene), an analog of the
sesquiterpenoid illudin S, was able to induce apoptosis in human cancer cell lines by boosting
the immune system. Although it exhibited encouraging results in shrinking malignant solid
tumors and drug-resistant cancers during Phase I clinical trials, irofulven had side effects of
retinal damage and visual disturbance in Phase II clinical trials [3,4]. Diterpenoid pleuromutilin and
its derivatives selectively inhibited bacterial protein synthesis through interaction with the 50S
subunit of prokaryotic ribosomes [5]. Derivatives of pleuromutilin, tiamulin, and valnemulin, with
improved activity against bacteria and solubility in water, have been developed as antibiotics for
veterinary use; and another derivative retapamulin was approved as an antibacterial agent for
human use by the FDA, USA in 2007 [6], which is marketed as an ointment under the brand
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Table 1. Terpenoids from Higher Fungi and Their Bioactivities

Terpenoids Higher Fungi Bioactivities Refs

Sesquiterpenoids

Illudins Omphalotus olearius Antitumor, antimicrobial [76]

3/,6b-Dihydroxycinnamolide Inonotus rickii Anticancer [77]

Hirsutane-type Stereum hirsutum Antimicrobial and antitumor [78]

Enokipodins C–D, E–J Flammulina velutipes Antimicrobial, Antifungal [79,80]

Nambinones A–C Neonothopanus nambi Anticancer [81]

Diterpenoids

Pleuromutilin Clitopilus passeckerianus Antimicrobial [82]

Secoscabronine M Sarcodon scabrosus Anticancer [83]

Striatoids A–F Cyathus striatus Neurotrophic activity [84]

Cyathins D–H Cyathus africanus Anti-inflammatory and cytotoxic [85]

Neosarcodonin A–C Sarcodon scabrosus Anti-inflammatory [86]

Triterpenoids

Ganoderic acids Ganoderma lucidum Antitumor, anti-HIV, antimicrobial,
antimetastasis, antioxidation, etc.

[87]

Lucidenic acids G. lucidum Anticancer [88]

Lanostane-type Naematoloma fasciculare Anticancer [89]

Ganoboninketals A–C Ganoderma boninense Anticancer [90]

Cattienoids A–C Tomophagus cattienensis Antitumor [91]
names Altabax and Altargo. Additionally, pilot animal studies using some of these bioactive
terpenoids have also shown their promising perspective. For example, the triterpenoid gano-
deric acid-T (GA-T) induces mitochondria-mediated apoptosis in cancer cells. In animal studies,
it inhibited solid tumor growth in nude mice and enhanced the sensitivity of the first-line
anticancer drug, doxorubicin [7]. Because terpenoid metabolites are generally of complicated
chemical structures and difficult to be chemically synthesized, biosynthesis of terpenoids by cell
factories (Box 1) of higher fungi has received increasing attention to meet the huge requirement
for (pre)clinical study and large-scale industrial production. For instance, the higher fungus
Ganoderma lucidum is used for production of anticancer and antimetastasis GAs. Key enzymes
in the GA biosynthetic pathway were overexpressed (e.g., [8]), and various fermentation
strategies including a new two-stage cultivation mode were developed to achieve a high GA
yield [9]. In addition to the endogenous production system by native hosts, synthetic biology
approaches, including the in vitro synthetic enzymatic pathway [10,11] and in vivo heterologous
production by genetically favorable hosts such as Escherichia coli and Saccharomyces cer-
evisiae [12,13], are recently regarded as interesting alternatives to original production hosts or for
producing non-natural products. For example, biosynthesis of the precursor of antimalarial drug
artemisinin, artemisinic acid, which was originally produced by Artemisia annua, can be achieved
in E. coli and S. cerevisiae at a very high titer of 25 g/l via the introduction of native genetic
components and optimization of the fermentation process [14,15]. In this review, first, the
current knowledge on the biosynthesis of terpenoids by higher fungi will be introduced, and the
development of genetic engineering of higher fungi will be highlighted. Then, typical examples
with regard to the production of terpenoids by higher fungi will be shown. As an alternative
and promising choice, a synthetic biology approach to produce terpenoids is consequently
discussed. Finally, perspectives on how to further improve terpenoid production will be
provided.
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Box 1. Cell Factory

Microbial transformation has been exploited by humans since ancient times, especially for early fermented food and
drinks. The birth of genetic engineering in the late 1970s and its further technological development have provided
molecular tools to engineer and produce heterologous proteins in various microorganisms including bacteria, yeast, and
fungi, and thus largely extended their manufacturing capabilities. The so-called modern biotechnology uses microbial
cells more directly to produce amino acids, enzymes, proteins, antibiotics, fuels, drugs, food, and biomaterials of
economic interest; therefore, currently the cell factory concept is more alive than ever. The contribution of systems
biology and synthetic biology principles, metabolic and protein engineering, and ‘omics’ technologies permits the full
exploitation of microbial cells from such an interdisciplinary approach. The cell factory concept is completely structured
through the examination of the metabolic capabilities of producer cells in close relationship with the nature and features of
the product and the bioproduction process itself. The consequent identification of bottlenecks during production and the
cellular responses triggered under this situation reveal the integrated nature and complexity of the biosynthesis
machinery and quality control as well as its connections with mechanisms coping with stresses at cellular and population
levels. On the basis of these findings, scientists can now better approach improved strategies to adapt microbes to new
production requirements for both natural and engineered products. In such a scenario, cells are modified as a ‘smart’
plant (cell factory) for product biomanufacturing.
Terpenoid Biosynthesis by Higher Fungi
According to the number of five-carbon isoprene units in the scaffolds, terpenoids are classified
into hemiterpenes (C5, one isoprene unit), monoterpenes (C10, two isoprene units), sesqui-
terpenes (C15, three isoprene units), diterpenes (C20, four isoprene units), triterpenes (C30, six
isoprene units), tetraterpenes (C40, eight isoprene units), and polyterpenes [(C5)n, n
could be 9–30 000). Among these terpenoids, sesquiterpenes, diterpenes, and triterpenes are
most frequently identified from higher fungi [16].

Five-carbon intermediates isopentenyl diphosphate (IPP) and dimethylallyl diphosphate
(DMAPP) are common precursors of terpenoids, which are synthesized via the mevalonate
pathway in fungi [17]. In this pathway, two molecules of acetyl-coenzyme A (acetyl-CoA)
undergo a condensation to yield acetoacetyl-CoA. Then, acetyl-CoA is added to acetoace-
tyl-CoA to form 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA), which is catalyzed by HMG-CoA
synthase. Mevalonic acid is further generated by HMG-CoA reductase. This six-carbon meva-
lonic acid is transformed into the five-carbon IPP after a series of reactions, namely a two-step
phosphorylation of the primary alcohol, further phosphorylation of the tertiary hydroxyl, followed
by decarboxylation and loss of phosphate. IPP is isomerized to generate DMAPP. Adding IPP to
its isomer DMAPP generates geranyl diphosphate (GPP). Condensation of GPP with additional
IPP units forms larger prenyl diphosphates – farnesyl diphosphate (FPP) and geranylgeranyl
diphosphate (GGPP) (Figure 1).

Successive head-to-tail 10-4 condensation of one to three IPP extender units to DMAPP gives rise
to sesquiterpenes and diterpenes, respectively. A series of FPP cyclizations, which are catalyzed
by sesquiterpene synthases, generate C15 hydrocarbon scaffolds of diverse sesquiterpenoids,
such as antitumor illudin [18] (Figure 1). A total of 11 putative sesquiterpene synthase genes were
identified from the genome of the illudin-producing mushroom Omphalotus olearius. Among these
genes, omp1, omp6, and omp7 are located in biosynthetic gene clusters, suggesting their
important function in illudin biosynthesis [19]. Cyclization of GGPP, which is catalyzed by diterpene
synthases, yields C20 scaffolds of diterpenoids. A biofunctional diterpene synthase is responsible
for the cyclization during biosynthesis of labdane-related diterpenoid pleuromutilin, which has
strong antibacterial activity against Gram-positive bacteria [20] (Figure 1). A bicyclic 6-6 copalyl- or
5-6 diphosphate was yielded via the N-terminal class II domain-mediated cyclization, while the
final product was produced by the C-terminal class I domain-catalyzed cyclization [16].

By contrast, longer chain C30 triterpenes are formed by 10-1 head-to-head dimerizations of
two FPP molecules. After formation of C30 squalene via dimerization of two FPP molecules,
C30–2,3-oxidosqualene is generated from oxygenation of C30 squalene catalyzed by
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Figure 1. Overview of Terpenoid Biosynthesis in Higher Fungi, in which the Precursors IPP and DMAPP are
Synthesized via the Mevalonate Pathway. Abbreviations: Acetyl-CoA, acetyl-coenzyme A; DMAPP, dimethylallyl
diphosphate; FPP, farnesyl diphosphate; GGPP, geranylgeranyl diphosphate; GPP, geranyl diphosphate; HMG-CoA, 3-
hydroxy-3-methylglutaryl-CoA; IPP, isopentenyl diphosphate.
squalene epoxidase, which is believed to be the skeleton of various triterpenoids (Figure 1).
Owing to significant biological activities, GAs are the best known fungal triterpenoids pro-
duced by G. lucidum, a famous traditional Chinese medicinal herb, of which lanosterol is
the most direct precursor [21]. To form different GAs, lanosterol subsequently undergoes
postmodifications triggered by different enzymes, mainly cytochrome P450s (CYP450s).
A possible biosynthetic pathway of GAs is illustrated here according to literature information
(e.g., [22]) (Figure 2).

Genetic Manipulation of Higher Fungi
Genetic manipulation of higher fungi provides a powerful tool to further elucidate terpenoid
biosynthesis and to increase the yield of target compounds. To fulfill comprehensive manipulations,
platform technologies such as genetic transformation, gene overexpression, deletion, and knock-
down are indispensable. Their current status and development are summarized as follows.

Genetic Transformation
The important premise of genetic manipulation is an efficient gene transformation system to
deliver extraneous DNA fragments. So far, no plasmid was found to be stably maintained in
higher fungi, and extraneous DNA fragments were accordingly integrated into the chromosome
for stable expression. Hitherto, polyethylene glycol (PEG) transformation, Agrobacterium tume-
faciens-mediated transformation (ATMT) and electroporation transformation have been the
most commonly used transformation systems in higher fungi.

For PEG transformation, around 80–180 transformants could be obtained per mg of DNA per 107

protoplasts in Pleurotus ostreatus [23], G. lucidum [24], and Lentinus edodes [25], respectively.
With this method, genes were randomly integrated into the chromosome in the form of multiple
copy. By contrast, ATMT allows single copy DNA integration. In a recent study, 10–15
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Figure 2. Putative Biosynthetic Pathways of Ganoderic Acids (GAs) from Lanosterol (Adapted from [2]).
Dashed red arrows indicate reactions that are catalyzed by CYP450s. Abbreviation: CYP450, cytochrome P450.
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transformants per 107 protoplasts were obtained in G. lucidum by the ATMT method [8]. Unlike
dealing with protoplasts, whose preparation is tedious and requisite by both PEG transformation
and ATMT, electroporation transformation was developed to transform DNA into basidiospores
or mycelial fragments of higher fungi. With the rapid process of preparing basidiospores,
efficiency could be achieved as 30–150 transformants per mg DNA in L. edodes [26].

Selective Marker
Currently, drug resistance markers are predominant selective markers for the selection of
positive transformants in higher fungi. For example, the introduction of the hygromycin B
phosphotransferase (hph) gene derived from bacteria permits resultant cells growing in the
presence of hygromycin. A mutant sdhB gene, encoding an iron–sulfur protein subunit of
succinate dehydrogenase, was proven to be a suitable carboxin resistance marker in G. lucidum
[8]. In future, with the wide application of various genetic tools in higher fungi, more and more
selectable markers (e.g., nutritional markers) may be available in higher-fungi chassis cells.

Gene Overexpression
In higher fungi, gene overexpression is mainly achieved by increasing the transcriptional level via
using either endogenous or heterogeneous promoters. Using the homogeneous gpd promoter
to drive the expression of 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR), twofold
improvement of GA biosynthesis was attained in the mutant compared with its wild-type
G. lucidum cells [8]. In another study, increased production of b-glucans was reached in
P. ostreatus through replacing the endogenous b-glucan synthase promoter with the gpd
promoter from Aspergillus nidulans [27]. Besides, heterologous gene expression can be greatly
enhanced in the enoki mushroom Flammulina velutipes by employing polycistron containing the
viral 2A cleavage sequence. The viral-derived 2A peptides were able to be properly self-cleaved
in F. velutipes and consequently adopted to connect multiple copies of heterologous protein in
one expression cassette. Thus, this strategy can be used for expressing multiple copies of a
single gene as well as multiple genes in a single reading frame [28].

Gene Deletion
Strategies of gene deletion in higher fungi are mostly based on homologous recombination (HR).
Owing to the inherent low HR efficiency, gene inactivation was only reported in Schizophyllum
commune with an efficiency of 3.25% [29]. To efficiently screen transformants with ectopic
integration, another gene deletion method was developed in this strain. The helper vector pDelcas
was constructed with a series of restriction sites, allowing directional cloning of the homologous
flanking regions at both ends of the nourseothricin resistance cassette. Besides, a phleomycin
selective marker was contained on the backbone plasmid, enabling rapid transformant screening
in S. commune [30]. Deletion of ku80, which is responsible for the non-homologous end-joining
system for DNA repair, further increased the deletion efficiency, but with the sacrifice of 100-fold
reduction of transformation efficiency in S. commune [31]. Likewise, gene disruption frequency
was enhanced by inactivation of the ku70 gene in Coprinopsis cinerea [32].

Gene Knockdown
As a useful technology, gene knockdown plays a significant role in studying the regulation of
metabolic flux and characterization of gene functions, particularly in cases where essential
genes are investigated. RNA interference (RNAi) is the predominant gene knockdown tech-
nique in higher fungi, which inhibits gene expression by promoting mRNA degradation. To
characterize the function of the squalene epoxidase (erg1) gene in Hypholoma sublateritium,
silencing of erg1 expression was finally chosen since the expected gene deletion mutant cannot
be obtained. A 800- or 1600-bp fragment of erg1 in the 30-50 orientation driven by the gdhA
promoter and transcriptional terminator of Agaricus bisporus was contained in the antisense
RNA expression cassette. Integration of this cassette into chromosome successfully reduced
Trends in Biotechnology, March 2016, Vol. 34, No. 3 247



erg1 expression by 50%, and decreased the production of clavaric acid (an antitumor triter-
penoid) and ergosterol-dependent phenotype, indicating the function of the gene in clavaric
acid biosynthesis [33].

Bioproduction of Terpenoids
Given the significant roles that natural terpenoids play in the biopharmaceutical and healthcare
industries, the bioproduction of terpenoids at high yield, productivity, and titer is extremely
important. Although many research contributions have been made in developing genetic
manipulation tools in higher fungi, cases related to improving endogenous terpenoid production
are very limited. For instance, very few investigations have been performed for bioactive
sesquiterpenoid production. Besides, until now the studies for terpenoid production have been
mostly focused on optimizing fermentation processes. Meanwhile, exogenous biosynthesis of
terpenoids via a synthetic biology approach is another interesting strategy. With the elucidation
of biosynthetic pathways, a few important sesquiterpenes, diterpenes, and triterpenes are to be
gradually synthesized heterologously by genetically tractable hosts.

Endogenous Production of Terpenoids by Higher-Fungus Cell Factories
Pleuromutilin is a famous antibacterial diterpenoid originally synthesized by mushrooms Clitopilus
passeckerianus and Pleurotus mutilis. Initially, chemical mutagenesis of C. passeckerianus and
optimization of its fermentation medium was adopted for screening mutants with higher pleuro-
mutilin production. As a result, a mutant strain Cp76, exposed to 0.15 mg/ml of N-methyl-N0-nitro-
N-nitrosoguanidine (NTG), was screened out and able to produce 67.4% higher pleuromutilin in
the locally formulated medium in 2.6 l of fermentor than in the original medium composition [34].
Later, batch kinetics, modeling, and fermentation conditions of pleuromutilin by another higher-
fungus P. mutilis, were systematically investigated. In batch cultivation at pH 7.5 and temperature
of 27 8C, the Luedeking–Piret equation applies to the pleuromutilin production kinetics by P. mutilis
[35]. Another investigation showed that using constant glucose concentration during fed-batch
cultivation led to high pleuromutilin production at 10.15 g/l and 0.053 g/l per hour in P. mutilis
fermentation [36]. In a more recent study, higher content of pleuromutilin was obtained by
enhanced expression of CYP450 family 1 in C. passeckerianus [37].

As a type of highly oxygenated lanostane-type triterpenoid, many GAs and their derivatives have
been proven to have anticancer and other pharmacological activities [38]; therefore, their
bioproduction has attracted plenty of interest from both academia and industry. In one of
our previous studies, a two-stage shaking–static fermentation concept was proposed to
promote GA production. This new fermentation mode resulted in high production of total
GAs at 3.19 mg/100 mg of dry cell weight (DCW), while only 1.36 mg/100 mg of DCW of total
GAs could be obtained in traditional fermentation systems [39]. In a bioreactor submerged
fermentation process, by optimization of various fermentation conditions, a GA production titer
of 754.6 mg/l was achieved by a strategy of pH shift and dissolved oxygen tension (DOT) shift
integrated with lactose feeding [40]. Addition of Ca2+, Na+, Mn2+, phenobarbital, and limitation of
nitrogen source could also enhance GA accumulation, among which addition of Ca2+ at 10 mM
showed the most significant effect, resulting in production of 71.12, 1.91, 11.94, 2.33, and
3.03 mg/g DCW of total GAs, individual GA-MK, -T, -S, and -Me, respectively, in two-stage
fermentation processes [41–44]. Furthermore, a new three-stage light irradiation strategy for GA
production was also developed with 466.3 mg/l of maximal GA production [45].

In addition to optimization of the fermentation process, studies on metabolic engineering of G.
lucidum for enhancing GA production were also performed. Owing to the difficulty of gene
deletion in higher fungi, strategies were primarily focused on overexpression of key biosynthetic
genes. For instance, overexpression of HMGR gene led to twofold increase in GA content
(reaching 30.69 mg/g DCW) [8], and overexpression of squalene synthase gave rise to
248 Trends in Biotechnology, March 2016, Vol. 34, No. 3



production of individual GA-MK, -T, -Me, and -S at 16, 40, 43, and 53 mg/100 mg DCW,
respectively, which were 2.86-, 2.67-, 1.95-, and 1.25-fold of those in the wild-type strain [46].

Exogenous Production of Terpenoids via Synthetic Biology Approach (Table 2)
Seco-iridoid is a monoterpenoid indole alkaloid (MIA) with anticancer and insect-repellent
activities. The last four steps of its biosynthetic pathway were discovered and reconstituted
in another plant, enabling heterologous production of the complex MIA strictosidine [47].
Geranic acid is an attractive monoterpenoid in flavor industry. Introduction of the mevalonate
pathway from Myxococcus xanthus resulted in production of 193 mg/l of geranic acid in
Pseudomonas putida, a host with superior tolerance towards geranic acid [48]. Limonene is
a monoterpene frequently used in the cosmetic industry. A computational tool, principal
component analysis of proteomics (PCAP), was conducted to optimize the heterologous
expression of nine mevalonate pathway genes in E. coli, leading to greater than 40% improve-
ment of limonene production [49].

As an antimalarial drug, artemisinin is a sesquiterpene naturally produced by A. annua, of which
the field cultivation yield is low and weather-dependent. A supply increase route was determined
via synthetic approaches, which involves metabolic engineering of microbes for the production
of its precursor, artemisinic acid, at high titer, productivity and yield, and subsequent chemical
conversion to artemisinin [50]. Earlier attempts of artemisinic acid production were made in
E. coli [15,51,52]. Owing to the poor expression of eukaryotic CYP450s in E. coli, later
investigations of artemisinic acid production were switched to yeast chassis cells. Expression
of CYP71AV1 and its cognate reductase CPR1 from A. annua, followed by improvements in the
fermentation process, led to production of 40 g/l amorphadiene in S. cerevisiae, but an
accompanying issue was a dramatic decrease of cell viability [53]. Two reasons may account
for the reduction of cell viability. One is phosphate limitation in the feed process, which might
direct carbon flux to produce and limit the cell growth. Another reason is the poor coupling
between CYP450 and its cognate reductase, which may lead to the generation of reactive
oxygen species and a decrease in cell viability [14,50,53]. To solve this problem, a cytochrome
b5, aldehyde dehydrogenase ALDH1, and a putative alcohol dehydrogenase ADH1 from
A. annua, were further introduced. Coupled with fermentation process optimization, the engi-
neered yeast strain was able to produce artemisinic acid as highly as at 25 g/l [14], which is key
to its successful commercialization by Amyris (Emeryville, CA, USA).

As a diterpenoid representative, tanshinones found in the Chinese medicinal herb Salvia miltiorrhiza
(also known as danshen in Chinese) exhibit multifunctional bioactivities, such as antioxidant,
antitumor, and antibacterial activities [54]. Owing to the lack of information on later steps of
synthesis of tanshinones, a synthetic biology approach for tanshinone production was focused on
biosynthesis of its precursor, miltiradiene, in S. cerevisiae. To enhance metabolic flux channeling to
miltiradiene biosynthesis, the modular pathway engineering (MOPE) strategy was applied by using
fusion proteins. The fusion of diterpene synthases SmCPS and SmKSL, fusion of GGPP synthase
BTS1 and farnesyl diphosphate synthase ERG20, together with tHMGR overexpression, resulted
in miltiradiene level of 365 mg/l in yeast diploid strain YJ2X [55]. Furthermore, overexpression of
tHMGR, UPC2.1, a fusion gene of BTS1 and ERG20, as well as a Sulfolobus acidocaldarius
GGPPS, led to production of 488 mg/l miltiradiene in S. cerevisiae during fed-batch fermentation
[56]. In addition to miltiradiene biosynthesis, a S. miltiorrhiza CYP76AH1 was identified as
miltiradiene oxidase, enabling production of the later precursor of tanshinone, ferruginol. Intro-
duction of CYP76AH1 and the phyto-CYP reductase gene resulted in ferruginol production at
10.5 mg/l in the engineered S. cerevisiae strain [57].

Ginsenosides, including pentacyclic type and tetracyclic type, are triterpenoids that have been
proven to be the main effective components of the herbal medicine ginseng with antiviral,
antitumor, and cholesterol-decreasing activities. The pentacyclic ginsenosides are derived from
Trends in Biotechnology, March 2016, Vol. 34, No. 3 249



Outstanding Questions
The current common problems in
studying the higher-fungus secondary
metabolism are: (i) the biosynthetic
pathway of interested secondary
metabolites is unclear, thus construc-
tion of the heterologous biosynthetic
pathway of GAs in other hosts is not
easy; (ii) the regulatory mechanism of
secondary metabolite (including terpe-
noid) biosynthesis is not well under-
stood; (iii) genetic modification of
higher fungi is still not so easy as the
gene transformation system is imma-
ture, and further development of
genetic manipulation tools such as
application and modification of the
CRISPR-Cas system is critical.

With trackable genetic backgrounds,
shorter fermentation cycle, and mature
zymotechnics, heterologous hosts
have multiple merits as cell factories
for terpenoid biosynthesis. However,
their ability to achieve economical pro-
duction metrics will likely be a big
challenge.
b-amyrin. Incorporation of Glycyrrhiza glabra b-amyrin synthase, tHMGR, S. cerevisiae squalene
synthase, and squalene epoxidase led to 107 mg/l of b-amyrin production in the engineered
yeast strain [58]. For tetracyclic ginsenoside production, protopanaxadiol is a representative.
Introduction of Panax ginseng dammarenediol II synthase and codon-optimized protopanax-
adiol synthase, along with tHMGR, a CYP450 reductase from Arabidopsis thaliana, farnesyl
diphosphate synthase, squalene synthase, and 2,3-oxidosqualene synthase, resulted in
1189 mg/l production of protopanaxadiol in S. cerevisiae [59]. Other examples are production
of ginsenoside compound K (CK), Rh2, and Rg3. A UDP-glycosyltransferase (UGT) UGTPg1
from P. ginseng has been proven to convert protopanaxadiol into CK. Overexpression of
UGTPg1, as well as tHMGR and UPC2.1, resulted in 1.4 mg/l CK production [60]. Later on,
another two UGTs, UGT 45 and UGT 29, from P. ginseng were further identified, and the
introduction of them into yeast enabled the chassis cell to directly produce Rh2 and Rg3 [61].

The sweetener glycyrrhizin is a bioactive triterpenoid from Glycyrrhiza, with huge economic
value. CYP88D6 was identified as the b-amyrin 11-oxidase in the glycyrrhizin biosynthetic
pathway. Coexpression of CYP88D6 and b-amyrin synthase resulted in production of
11-oxo-b-amyrin, a possible important intermediate of glycyrrhizin biosynthesis, in yeast
[62]. Saikosaponins are triterpenoids originally accumulated in Bupleurum falcatum and exhibit
multiple bioactivities. Recently, a CYP450 gene from B. falcatum, named as CYP716Y1, was
reported to be involved in the oxidation of saikosaponins. Similar to a previous approach,
combined expression of CYP716Y1 with additional genes from other plant species allows
production of monoglycosylated saponins in yeast. Further, a cyclodextrin-based culturing
strategy was developed to sequester triterpenes for improving their productivity [63].

Carotenoids are tetraterpenoid representatives and have been widely applied in the food,
chemical, and healthcare industries. A b-carotene hydroxylase gene from algae was incorpo-
rated into a designed carotenoid biosynthetic pathway, which exhibited higher carotenoid
production in yeast cells [64]. In addition to exploration of more effective catalytic elements
for carotenoid synthesis, many efforts have been taken to fine-tuning the heterologous pathway
to improve their final production. For example, controllable assembly and expression of the
b-carotene biosynthetic pathway can be achieved by adopting GAL10–GAL1 bidirectional
promoters [65]. In another study, sequential control mediated by environmental glucose con-
centration was used to modulate expression of pathway genes and utilization of intermediates,
resulting in 1156 mg/l production of carotenoid [66].

Concluding Remarks and Future Perspectives
Higher fungi have been used as medicinal and edible materials for thousands of years and have
the ability to produce considerable amounts of bioactive secondary metabolites. In recent years,
they have also attracted extensive interest in the production of useful terpenoids. As a result of
evolution, higher fungi are inherently tolerant and have suitable expression systems for the
production of their native terpenoids, which was still mysterious and was regarded as its unique
merit as cell factory for terpenoid biosynthesis. However, studies on the production of terpenoids
by higher fungi are far from sufficient either in depth or in extent, which may be attributed to (i)
limited knowledge on metabolism and regulation of higher fungi, and (ii) their corresponding
immature genetic manipulation systems.

Understanding biosynthetic pathways and their complicated regulation is critical to comprehend
the determinants for improving terpenoid biosynthesis. For example, in the case of GAs, some
definite steps were identified for formation of the terpenoid skeletons; however, the enzymes
responsible for postmodification of these skeletons, the majority of which are believed to be
CYP450s, are still unknown (Figure 2). Recently, more and more ‘omics’ information of higher
fungi is being released [22,67–71], and such studies including genomics and transcriptomics
may lead to not only the clarification of terpenoid biosynthetic steps, their biosynthetic
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mechanisms, and physiological significance but also further development of genetic tools,
including discovery of more determinates for improving HR efficiency, promoters with different
expression strength, and so forth.

Compared with the achievement of genetic engineering of the cell factories of E. coli and yeasts,
studies on higher fungi are obviously lagging behind. Manipulations are still limited to single gene
modification or individual pathways. Notably, gene deletion was only available in a very few
species of higher fungi and their corresponding efficiency was still very low. Such problems may
be solved by developing genome editing tools such as CRISPR-Cas [72–74] and group II introns
[75] for different species of higher fungi, which accordingly enable combinatorial manipulations
and result in extensive impact on production of useful secondary metabolites.

Synthetic biology approaches support identification of the terpenoid biosynthetic pathway and
have also been widely applied to heterologous production of terpenoids. With trackable genetic
Table 2. Exogenous Production of Terpenoids via a Synthetic Biology Approach

Terpenoids Host Synthetic Biology
Approach

Titer or Yield

Monoterpenoids or Their Precursors

Strictosidine Nicotiana
benthamiana

Expression of eight genes
encoding the (seco)iridoid
biosynthetic pathway, two
genes for precursor
formation and two genes
for downstream alkaloid
biosynthesis

Not mentioned [47]

Geranic acid P. putida Introduction of the
mevalonate pathway from
Myxococcus xanthus

193 mg/l [48]

Limonene E. coli Optimize the heterologous
expression of nine
mevalonate pathway
genes by PCAP

605 mg/l [49]

Precursors of Sesquiterpenoids

Artemisinic acid S. cerevisiae Expression of CYP71AV1
and its cognate reductase
CPR1 from A. annua, a
cytochrome b5, aldehyde
dehydrogenase ALDH1,
and a putative alcohol
dehydrogenase ADH1
from A. annua

25 g/l [14]

Precursors of Diterpenoids

Miltiradiene Diploid yeast
strain YJ2X

MOPE strategy 365 mg/l [55]

S. cerevisiae Overexpression of
tHMGR, UPC2.1, a fusion
gene of BTS1 and ERG20,
as well as a Sulfolobus
acidocaldarius GGPPS

488 mg/l [56]

Ferruginol S. cerevisiae Introduction of
CYP76AH1 from S.
miltiorrhiza and phyto-
CYP reductase

10.5 mg/l [57]
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Table 2. (continued)

Terpenoids Host Synthetic Biology
Approach

Titer or Yield

Triterpenoids or Their Precursors

b-Amyrin S. cerevisiae Incorporation of
Glycyrrhiza glabra b-
amyrin synthase, tHMGR,
S. cerevisiae squalene
synthase, and squalene
epoxidase

107 mg/l [58]

Protopanaxadiol S. cerevisiae Introduction of Panax
ginseng dammarenediol II
synthase and codon-
optimized
protopanaxadiol synthase,
along with tHMGR, a
cytochrome P450
reductase from
Arabidopsis thaliana,
farnesyl diphosphate
synthase, squalene
synthase, and 2,3-
oxidosqualene synthase

1189 mg/l [59]

Ginsenoside compound K (CK) S. cerevisiae Overexpression of
UGTPg1 from P. ginseng,
as well as tHMGR and
UPC2.1

1.4 mg/l [60]

Rh2 S. cerevisiae Introduction of UGTPg45 1.45 mmol/g DCW [61]

Rg3 S. cerevisiae Introduction of UGTPg45
and UGTPg21

3.49 mmol/g DCW [61]

11-Oxo-b-amyrin S. cerevisiae Coexpression of
CYP88D6 from
Glycyrrhiza and b-amyrin
synthase

Not mentioned [62]

Saponins S. cerevisiae Expression of CYP716Y1
from B. falcatum and
additional genes from
other plant species

Not mentioned [63]

Tetraterpenoids

b-Carotene Kluyveromyces
marxianus

Incorporated a b-carotene
hydroxylase gene from
algae into a designed
carotenoid biosynthetic
pathway

244.7 mg/g DCW [64]

S. cerevisiae Controllable assembly and
expression of the
heterologous b-carotene
biosynthetic pathway by
adopting GAL10–GAL1
bidirectional promoters

7.41 mg/g DCW [65]

Carotenoid S. cerevisiae Sequential control
mediated by
environmental glucose
concentration was used to
modulate expression of
heterologous pathway
genes and utilization of the
intermediates

1156 mg/l (20.79
mg/g DCW) [66]
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Box 2. Strategies Empowering Smart Higher-Fungus Cell Factory Construction

With the advances in metabolic engineering, synthetic biology, and process engineering, combinatorial strategies,
including enhancing pathway gene expression, reducing competitive pathway gene expression, controlling regulation
and environmental factors, allow construction of higher-fungus cell factories for target terpenoid production (Figure 3).
For optimizing pathway gene expression, increasing precursor supply, improving the expression of key genes via
changing the promoter strength, ribosomal binding site (RBS), and copy numbers, and reducing competitive pathway via
knockout or knockdown of the branched genes are some of the commonly adopted approaches. By contrast, different
levels of regulation play nonignorable roles in terpenoid synthesis by native higher-fungi hosts. For example, spore
accumulation was always observed in cells with increased GA production (our unpublished data). With the aid of omics
research, more and more candidates related to either pathway specific regulation or global regulation will emerge and will
be characterized. Employing their function for improving terpenoid synthesis in higher fungi will be the further step. In
addition, responding to different environmental factors such as oxygen supply, medium, pH, shearing, mixing, and so on,
various cellular physiological and metabolic responses could be obtained. Therefore, control of environmental factors
may provide a useful means for improving terpenoid fermentation, especially in large-scale cultivations.

Pathway specific regulators

Regula�on

Cell factory

Knockout

Knockdown

Shear, mixing, etc.

Medium, pH, etc.

Oxygen supply

Increasing
precursor gene
expression

Reducing
compe��ve

pathway gene
 expression

Increasing key
gene expression
(promoter, RBS,
copy number)

Enhancing
pathway gene
expression Control of

environmental
factors

Global regulators Figure 3. Strategies Empowering
Smart Higher-Fungus Cell Factory
Construction (Adapted from [2]).
Abbreviation: RBS, ribosomal binding
site.
backgrounds, shorter fermentation cycle, and mature zymotechnics, heterologous hosts have
multiple merits as cell factories for terpenoid biosynthesis. However, their ability to achieve
economical production metrics will likely be a big challenge. From up-to-date reports, we only
found artemisinic acid production as one successful commercial case, which only requires a
simple and highly efficient photochemical conversion to its final product artemisinin (Table 2).
Potential product toxicity may be the common bottleneck, because many bioactive terpenoids
generally cause cell toxicity (Table 1) and these products are new to the heterologous hosts.
Specific transporters and regulation mechanisms, which are responsible to pump out these
toxic products and alleviate product toxicity, are often absent in the heterologous hosts. To
address this limitation, strategies could be learned from nature, for example, introducing novel
transporters to pump out toxic products, which also requires the exploitation of information from
multilevel ‘omics’ investigation on higher fungi.

By integrating genetic manipulation platforms and ‘omics’ research, more progress will be
made to uncover the mechanisms of terpenoid biosynthesis by higher fungi. As a result, a better
ability of engineering will be obtained with regard to commercialization of target compounds,
especially on construction of smart higher-fungus cell factories for terpenoid biosynthesis
(Figure 3, Box 2).
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