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Abstract Metabolites in maize kernels are associated not
only with nutritional value but also physiological proper-

ties such as maturation, desiccation, and germination.

However, comprehensive information concerning the me-
tabolome of maize kernels is limited. In this study, we

identified 210 metabolites in mature kernels of 14 repre-

sentative maize lines using a non-targeted metabolomic
profiling approach. Further statistical analysis revealed that

75 metabolites were significantly variable among those

tested lines, and certain metabolites out of the detected 210
metabolites played critical roles in distinguishing one line

from another. Additionally, metabolite–metabolite corre-

lation analysis dissected key regulatory elements or path-
ways involved in metabolism of lipids, amino acids and

carbohydrates. Furthermore, an integrated metabolic map

constructed with transcriptomic, proteomic and metabolic
data uncovered characteristic regulatory mechanisms of

maize kernel metabolism. Altogether, this work provides

new insights into the maize kernel metabolome that would
be useful for metabolic engineering and/or molecular

breeding to improve maize kernel quality and yield.

Keywords Metabolomics ! Metabolite–metabolite
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1 Introduction

Maize (Zea mays subsp. mays), an important organism for

genetic and molecular studies, is one of the most important
crops in the world (Serna-Saldivar et al. 1994; Wang et al.

2012). Cultivated maize was domesticated from the grass

teosinte in Central America around 10,000 years ago (Jiao
et al. 2012). Nowadays, the crop displays remarkable

morphological and genetic diversity, which has been con-

sidered to be the product of multiple independent domes-
tications (Matsuoka et al. 2002; Liu et al. 2003).

During the past decades, various modern genetic and

molecular methodologies have been employed to understand
the genetic and molecular mechanisms underlying maize

domestication (Lai et al. 2010; Li et al. 2012a, b). For
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example, Jiao et al. (2012) investigated 278 temperate maize

inbred lines from different stages of breeding history using
genome-wide association, and indicated that artificial

selection significantly reduces nucleotide diversity and

increases the proportion of rare alleles, while modern
breeding brings rapid and dynamic genetic changes into the

maize genome. Fu et al. (2010) assessed the gene and gene

networks in young seedlings of 98 maize hybrids in multi-
environment field trials by transcription profiling with

microarrays, and revealed that genes involved in sucrose
degradation, glycolysis, cell expansion and endocycle are

associated with grain yield. Using 2-D electrophoresis pro-

teomic method, Fu et al. (2011) unraveled the genetic basis of
heterosis based on differently accumulated proteins in

embryo samples of five hybrids compared with their parental

lines, namely, Nongda 108 (Xu 178 9 Huang C), Yuyu 22
(Zong 3 9 87-1), Zhengdan 958 (Zheng 58 9 Chang 7-2),

Xundan 20 (Xun 9058 9 Xun 928), and Xundan 18 (Xun

248 9 Xun 926). Using gas chromatography–mass spec-
trometry (GC/MS), Riedelsheimer et al. (2012a) detected

118 leaf metabolites in a set of 289 diverse maize inbred lines

with 56,110 SNPs, suggesting that metabolites represent
promising connecting links for narrowing the genotype–

phenotype gap of complex agronomic traits in maize.

Combining genomic data (SNPs) with leaf metabolomic data
(130 metabolites), Riedelsheimer et al. (2012b) showed that

metabolic profiles of diverse maize inbred lines allow pre-

diction of their testcross performance in multi-location field
trials, which provides a reliable screening of large collec-

tions of diverse inbred lines for their potential to create

superior hybrids. Likewise, Lisec et al. (2011) conducted a
comparative analysis of the root metabolome of 6 parental

maize inbred lines and their 14 corresponding hybrids

showing fresh weight heterosis, and concluded that maize
hybrids display lower metabolite variability and complex

metabolite inheritance patterns. In addition, using GC cou-

pled to time-of-flight MS (GC–TOF–MS), Skogerson et al.
(2010) identified 119 metabolites in kernels of a range of

hybrid maize lines grown at three locations, and observed

that metabolic variation of the small molecule metabolite
pool is highly associated with genotypic variation and that

levels of certain metabolite classes have inverse genotypic

relationship to each other.
Maize kernel quality is of huge agronomical importance,

and is ultimately determined by chemical composition.

Metabolites in maize kernel function as energy components
for the kernel, nutrients for humans and livestock, and

resource for bioenergy production as well. Despite its

significance mentioned above, the information about the
metabolome of maize kernel, particularly in inbred lines is

limited. Since metabolomic approaches have been

increasingly applied in crop breeding (Fernie and Schauer
2009; Kusano et al. 2011), assisting the process of the

selection of elite germplasms, thus, understanding on the

kernel metabolome in maize, particularly the metabolic
network, is helpful for the proper manipulation of maize

kernel metabolic pathways to increase its productivity and

nutritious quality.
In this study, using GC/MS and ultra performance liquid

chromatography-MS/MS (UPLC/MS/MS), we conducted

metabolic profiling of mature maize kernels of represen-
tative 13 inbred lines and one hybrid line. The results

revealed the remarkable metabolic variation and notable
variability of metabolite–metabolite correlation network in

mature maize kernels. Additionally, based on the combined

data from transcriptomic, proteomic and metabolomic
analyses, we, for the first time, constructed a metabolic

map of the mature maize kernel, and provided a compre-

hensive and unique metabolic network that could serve as a
useful tool for future maize breeding with the aim to

improve productivity and nutritious quality.

2 Materials and methods

2.1 Plant materials

Fourteen representative maize lines including 13 inbred
lines and 1 popular hybrid line in China (Supplementary

Table S1), kindly provided by Prof. Jinsheng Lai from

China Agricultural University, were selected for their
agronomic importance and genetic relationships. All maize

lines were planted at a farm in Minhang, Shanghai, China.

The experimental design was a randomized complete block
design including three repeats for each inbred line. All

primary ears were self-pollinated. All primary ears from

each plot were harvested at physiological maturity, and air
dried under sunlight for 72 h, frozen with liquid nitrogen

and kept at -80 "C until analysis.

2.2 Metabolite profiling

Metabolic profiling of maize kernels was performed using a
global unbiased platform, a combination of three indepen-

dent analytical platforms: UPLC/MS/MS optimized for

basic species, UPLC/MS/MS optimized for acidic species,
and GC/MS (Oliver et al. 2011; Xu et al. 2012). The detailed

descriptions of these platforms, including instrument, data

acquisition and processing, and compound identification and
quantitation, were published previously (Evans et al. 2009;

Ohta et al. 2009). For sample extraction, kernels of each line

were grounded in liquid nitrogen into fine powders using
SPEX 6870 Freezer/Mill (SPEX SamplePrep, New Jersey,

USA) and 40 mg of lyophilized powder per sample were

extracted at room temperature using 400 lL of methanol
containing recovery standards, and then analyzed with the
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three platforms. For the two LC platforms, chromatographic

separation followed by full scan mass spectra was carried out
to record retention time, molecular weight (m/z) and MS/

MS2 of all detectable ions presented in the samples. For the

GC platform, the samples were derivatized using bis-
trimethyl-silyl-triflouroacetamide (BSTFA) prior to injec-

tion. The retention time and molecular weight (m/z) for all

detectable ions were measured. The metabolites were iden-
tified by automated comparison to Metabolon’s reference

library entries. For each platform, the reference library was
created using approximately 1,500 authentic standards that

were analyzed in multiple concentrations and under the same

conditions as the experimental samples. Each library
includes retention time, molecular weight (m/z), preferred

adducts, and in-source fragments as well as their associated

MS/MS2 spectra. The combination of chromatographic
retention index and mass spectra signatures gave an indica-

tion of a match to the specific metabolite.

2.3 Metabolomic data analysis

Data normalization was performed as described previously
(Lawton et al. 2008). The variation resulting from instrument

inter-day tuning differences was block corrected for studies

spanning multiple days. For each compound, raw area counts
were divided by its median value, setting the medians equal

for each day’s run. Missing values (if any) were assumed to

be below the limits of detection and were imputed with the
observed minimum after the normalization step. Mev

(MultiExperiment Viewer) 4.8 was used to draw a heat map

and perform one-way ANOVA with standard Bonferroni
correction. principle component analysis (PCA) analysis

was done with SIMCA-P 12.0 software and significant

changed metabolites were further determined in a PLS-DA
model, followed by independent t test (SPSS 17.0 software)

as described previously (Chang et al. 2012). Metabolic

pathway and the graphical presentation of metabolite–
metabolite correlation were composed with Cytoscape ver-

sion 2.8.3. Before correlation analysis, metabolites whose

contents are the same values in more than seven lines were
filtered for their highly suspect correlations of significant.

The metabolite–metabolite correlation was done using

Pearson’s product-moment correlation (Pearson’s r), as
provided by the R statistical software. The corresponding

p-values were also calculated using the cor.test function.

p-Values were then adjusted by the multiple testing proce-
dures described by Benjamini and Yekutieli (2001), by

controlling the false discovery rate (FDR).

2.4 MS-based shotgun-proteome profiling

Proteins were extracted from mature maize kernel powders
with extraction buffer [100 mM Tris–HCl (pH 8.5), 5 mM

DTT, 1 mM EDTA, 1 % (v/v) plant proteinase inhibition

cocktail (Sigma, St. Louis, MO, USA)]. After incubation for
30 min at room temperature, the tissue homogenates were

centrifuged at 14,0009g for 15 min and then protein concen-

tration in the supernatant was measured by Synergy 2 Multi-
Mode Microplate Reader. A 10–20 lL aliquot of supernatant

containing 100 ng of total soluble protein was mixed with 29

sample loading buffer [100 mM Tris–HCl (pH 6.8), 200 mM
Dithiothreitol (DTT), 4 % SDS, 20 % glycerol, and 0.2 %

bromophenol blue], and then boiled for 5 min prior to run on
12 % 1D sodium dodecyl sulfate polyacrylamide gel electro-

phoresis (SDS–PAGE) at 80/120 V. After the protein front ran

approximately 5 cm onto the resolving gel, the gel with total
proteins was cut for later MS identification as previously

reported (Reumann et al. 2009). The reference maize proteome

database was downloaded from maize sequence (http://www.
maizesequence.org/index.html).

3 Results

3.1 Metabolic profiling of mature maize kernel

To comprehensively understand the metabolome of mature

maize kernel, we performed metabolic profiling of kernels
from a set of 14 maize lines (Supplementary Table S1) using

a well-established global metabolic profiling approach that

combines GC/MS with UPLC/MS/MS (Oliver et al. 2011;
Xu et al. 2012). A total of 210 metabolites were identified in

the tested 14 maize lines (Supplementary Table S2), which

uncovered so far the most broad maize kernel metabolome as
compared with previous studies (Harrigan et al. 2007;

Skogerson et al. 2010; Frank et al. 2012; Yang et al. 2013).

The identified 210 metabolites included 199 primary
metabolites, 9 secondary metabolites and 2 phytohormones

(Supplementary Table S3), which could be mapped to 8

super pathways and further 42 sub-pathways, according to
the database from Plant Metabolic Net (PMN) and Kyoto

Encyclopedia of Genes and Genomes (KEGG). Those

identified 210 metabolites covered most of the central
metabolism pathways and partial secondary pathways,

corroborating the power of this non-targeted metabolomic

profiling platform in uncovering the crop seed metabolome.
The identified 199 primary metabolites reflected the most

common and abundant metabolites in maize kernel,

including 64 amino acids, 55 carbohydrates, 37 lipids, 21
nucleotides, 18 CPGECs (cofactors, prosthetic groups,

electron carriers) and 4 peptides.

3.2 Metabolic variation of mature maize kernel

To have an overview of the maize kernel metabolome among
tested lines, K-Medians clustering analysis was performed
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resulting in a plot of the all 210 biochemicals versus 14 maize

lines that divided all the metabolites into 10 classes (Fig. 1a;
Supplementary Table S2). Except for 7 metabolites in class

10 that were of low abundance in all the lines, the remaining

203 identified metabolites displayed remarkable diversity in
their abundances across the 14 tested lines (Fig. 1a). Nota-

bly, the enrichment of certain metabolites seemed to be line-

specific. For instance, 34 of 43 metabolites in class 1 were
abundant only in 153-77, 16 of 22 metabolites in class 3 were

only abundant in Dan340, while 14 of 17 metabolites in class

6 were enriched only in Ye478. Conversely, most of 210
metabolites appeared to be very low in the inbred line

84-106-2-2-3. In addition, as compared with all inbred lines

including its parent and grandparent lines, the abundances of
most of these 210 metabolites in the hybrid Zhangdan958

were also very low, lacking the obvious metabolic variation

as observed in the inbred lines. Furthermore, some metabo-
lites were specifically enriched in one or more lines. For

example, the level of dihydrokaempferol (Dih) was the

highest in Dan340, while that of costunolide (Cos) was
higher in 153-77 and Dan340 compared to the other 12 lines.

Trehalose level was elevated in 153-77, BC109-2, BT1,

H109, Huangzao4 and Chang7-2, but was low in other lines.
Moreover, the content of sorbitol was the highest in 153-77

but the lowest in CML103, while raffinose content was

higher over other lines.

To better evaluate the natural metabolic variation and

the variability of each metabolite, one-way ANOVA ana-
lysis revealed that the levels of 75 metabolites were sig-

nificantly different (p B 0.05) among the tested 14 maize

lines (Supplementary Table S3), including 21 amino acids,
18 lipids, 12 nucleotides, and 10 carbohydrates, etc. The

top five highly variable bio-chemicals were Dih, nicotinate

ribonucleoside (NR), phosphoethanolamine (PE), stigmas-
terol, and trans-4-hydroxyproline (4-HP). Conversely, the

remaining 135 relatively non-variable metabolites included

all 8 glycolysis carbohydrates plus sucrose (Suc) and
fructose (Fru).

To provide a snapshot of the information hidden in the

metabolomic data, PCA was performed on all 14 maize
lines. Although PCA could not distinguish lines with dif-

ferent maturities, grain texture or origin, it, to some extent,

could separate lines with different genetic relationships
(Fig. 1b). For example, the SiPingTou (SPT) heterotic

group (lines Huangzao4 and Chang7-2) could be clearly

separated from other heterotic groups such as Tuxpeno
(line CML103), Suwan (line BT1) and Reid (line Ye478),

and the elite hybrid line Zhengdan958 could be clearly

separated from its grandparent line Huangzao4, its parent
line Chang7-2, and to less extent, its maternal grandparent

line Ye478. Thus, metabolic data of these maize lines

reflects, at least to some extent, their genetic backgrounds.
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The supervised statistical method PLS-DA was then

employed to identify metabolites associated with the iden-

tified metabolic separations (Supplementary Tables S4–S9,
S11–S13; Supplementary Fig. S1). Taking the four elite

inbred lines (Huangzao4, Dan340, Chang7-2 and Ye478) as

an example, there were 40, 40, and 17 metabolites that could
separate Dan340 from Huangzao4, Chang7-2, and Ye478,

respectively (Supplementary Tables S4–S6), and the num-

bers of the metabolites separating Huangzao4 from Ye478
and Chang7-2 were 26 and 24, respectively (Supplementary

Tables S7–S8), while 20 metabolites could separate Ye478

from Chang7-2 (Supplementary Tables S9). Collectively, 12
metabolites including 4 amino acids, five lipids, two sec-

ondary metabolites and one CPGEC could separate one line

from other three lines (Supplementary Tables S10). In the

case of Zhengdan958 from its parent (Chang7-2) and

grandparent lines (Huangzao4 and Ye478) (Fig. 2a), 13, 33,
and 30 metabolites could separate Zhengdan958 form its

maternal grandparent Ye478 (Supplementary Table S11),

paternal grandparent line Huangzao4 (Supplementary Table
S12), and its paternal parent line Chang7-2 (Supplementary

Table S13), respectively. Notably, eight metabolites could

separate Zhengdan958 and Chang7-2 between Huangzao4
and Chang7-2, the ratios of Zhangdan958/Chang7-2 and

Chang7-2/Huangzao4 for each of these 8 metabolites,

however, were reverse (Fig. 2b), strongly suggesting a
dominant inherit patterns of these 8 metabolites. Likewise,

eight metabolites were responsible for the separation each
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among these four lines (Fig. 2c). Among them, the level of
gamma-glutamylcysteine in Zhengdan958 was significantly

higher than those in other lines.

3.3 Metabolite-metabolite correlation analysis

To reveal the regulatory metabolic network in maize ker-
nels, network-based analysis (Toubiana et al. 2012) was

used to analyze the correlations among identified metabo-

lites. We calculated the values of Pearson pair-wise cor-
relation across these lines for the set of 210 identified

metabolites (Supplementary Table S14). The results were

visualized as a heat-map as shown in Fig. 3, which showed
in total 18,528 correlations, ranging from -0.92 for ery-

thronate and myo-inositol hexakisphosphate (IP6) to 0.99

for glucose (Glc) and Fru.
Further screening found that there were 448 significant

correlations with r2 C 0.49 (r C 0.7 & r B-0.7) and

FDR B 0.05 (Fig. 4). Among them, 421 were positive cor-
relations while only 27 were negative ones. Notably, amino

acids dominated the significant metabolite–metabolite cor-

relations (213 correlations). There were 42 amino acids that
were highly correlated with each other (68 correlations) or

with other non-amino acid metabolites (145 correlations),
and no correlations between amino acids and phytohormones

were found. All the 20 standard amino acids except gluta-

mate (Glu), asparagine (Asn) and histidine (His) had in total
78 significant correlations, 97 % of which were positive.

Notably, five amino acids, methionine (Met), threonine

(Thr), isoleucine (Ile), leucine (Leu), and valine (Val), cor-
related each other significantly. Especially, Val positively

correlated with other four amino acids (r C 0.90). With the

exception of negative correlations for alanine (Ala) with IP6
and proline (Pro) with glucarate, all the remaining 12 stan-

dard amino acids were highly and positively associated (66

correlations with the average of r value of 0.84). Most (83 of
145) significant external correlations for amino acids were

with carbohydrates including Glc and Fru but not Suc and

alpha-ketoglutarate (2-KG). In addition, 37 carbohydrates
had 182 significant correlations: 45 within carbohydrates and

137 with non-carbohydrate metabolites. Similarly, 29 lipids

had 100 significant correlations: 40 within lipids and 60 with
non-lipid metabolites. For nucleotides, most of the signifi-

cant correlations (123 out of 144) were between nucleotides

and other metabolites. Notably, the only correlation for auxin
indoleacetate (IAA) was with myo-inositol (r value of 0.79).
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Both r and p values of the correlations were displayed in distinct colors (Color figure online)
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On the other hand, 22 out of 27 significantly negative cor-

relations were related to myo-inositol phosphates, especially,

17 out of 27 negative correlations were related to IP6, an anti-
nutritional factor present in most of the cereals and legume-

based foods and feeds (Chen et al. 2008).

3.4 Comprehensive metabolic pathways in mature

maize kernel

To fully understand the regulatory aspects of the metabolic

pathways that exist in mature maize kernel, we further

carried out transcriptomic and proteomic profiling of the
mature kernel of Hi-II maize line, and revealed the

expression of 342 proteins (Supplementary Table S15) and

17,607 genes (Rao et al. 2013). Expression of 311 genes

(Supplementary Table S15) coincided with expression of
their encoding proteins in mature maize kernel. Pathway

enrichment analysis observed that 1,302 out of the 17,607

transcripts were significantly enriched in 30 pathways
(Supplementary Table S16). Likewise, MAPMAN analysis

categorized those identified proteins into 35 groups (Sup-

plementary Table S17), the first 26 groups (except stress
and metal handling) containing 155 proteins that were

involved in various metabolic pathways.

Using PMN and KEGG, a comprehensive metabolic map
in mature kernel of Hi-II maize was constructed from the

Fig. 4 Kernel metabolite network based on significant correlations
(r2 C 0.49; FDR B 0.05). Metabolites were represented as nodes, and
their relations as edges. The positive correlations are shown in blue

and the negative correlations are shown in red. Different node colors
displayed metabolites in different pathway (Color figure online)
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identified 208 metabolites (two isobars out of 210 identified

metabolites could not be mapped, see Supplementary Table
S2) and the transcriptomic and proteomic data. The resulting

metabolic map incorporated 400 identified transcripts and 68

identified proteins participating in 118 reactions covering 87
identified metabolites that covered 7 super pathways (except

secondary metabolism) and 23 sub-pathways (Fig. 5; Sup-

plementary Table S18). Importantly, 353 out of the 400
transcripts were involved in the metabolisms of 34 amino

acids and 26 carbohydrates. These 34 amino acids were
distributed into 57 mapped reactions. We observed the

conversions between Glu and seven other amino acids, such

as Asn and Asp, with the involvement of 2-KG. There were
43 and 47 transcripts associated with the metabolism of SAM

and glutathione (reduced, GSH), respectively, indicating an

important and active role of these 2 non-standard amino
acids in maize kernel metabolism. Additionally, the 26 car-

bohydrates were distributed into 40 mapped reactions

including glycolysis, TCA cycle and starch metabolism that
play vital roles in kernel development. Moreover, 52 of the

400 transcripts were associated with the metabolism of 12
nucleotides and other classes of metabolites, including

Fig. 5 The comprehensive metabolic map in maize mature kernel
with 208 metabolites. In the metabolic map, totally 400 transcripts
and 68 proteins are mapped to 118 reactions covering the 87
metabolites detected in maize kernel, which are shown on the edge as
Rx(y/z). For example, R23(5/0) from IP3 to IP4 indicates 5 transcripts
and 0 protein mapped to the reaction 23. 75 out of mapped 208

metabolites are significantly different among 14 tested lines, which
are labeled from pink to red according to the value of –lg p from 1.35
to 20 (20 was defined for Dih as its p value in one-way ANOVA was
0), while the left 133 stable metabolites are labeled in green (Color
figure online)
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lipids, peptides, CPGECs, and IAA, distributing among 25

mapped reactions.
The 68 identified proteins were associated mainly with

the metabolisms of six standard amino acids and several

carbohydrates. Those six standard amino acids were Glu,
Met, Cys, serine (Ser), Gly, Asn and Pro, while the car-

bohydrates were sorbitol, Glc, Fru, Suc, glucose 1-phos-

phate (G1P), glucose-6-phosphate (G6P), fructose-6-
phosphate (F6P), citrate, malate, succinate, 2-KG, and

isocitrate. Abovementioned results indicated important
roles of pathways involved in the metabolism of those

carbohydrates and amino acids in the maize kernel.

4 Discussion

A maize kernel’s nutritional and physiological traits are

functionally related to its metabolome (Nambara and

Nonogaki 2012). Although metabolic analysis of kernel
development have been done in maize (Harrigan et al.

2007; Skogerson et al. 2010; Frank et al. 2012; Yang et al.

2013), questions regarding maize kernel metabolic vari-
ability remain open due to the lack of integrative studies on

different inbred lines. By subjecting a sample into three

analytical platforms that combined GC–MS and UPLC-
MS/MS, we compared the mature kernel metabolomes of

14 maize lines and revealed significant variation among

them not only in metabolite abundances but in metabolite–
metabolite correlations. In combined with other omics data,

we constructed a metabolic map. Thus, this study provides

not only a much broader metabolomic profile of mature
maize kernel as compared with previous studies (Harrigan

et al. 2007; Skogerson et al. 2010; Frank et al. 2012; Yang

et al. 2013), but also a full picture of the metabolic path-
ways functioning in mature maize kernel. Our work

extends the understanding of maize kernel metabolism

regarding to the process of maturation, desiccation and
perhaps germination, and could be useful for metabolic

engineering and/or molecular breeding to improve maize

kernel quality and yield.
Among the identified 210 metabolites in kernel of

mature maize kernels, 32 (about 14 %) metabolites were

basic and essential macronutrients listed in the USDA
National Nutrient Database for Standard Reference

(Release 25), including 17 standard amino acids, five car-

bohydrates, three CPGECs, and seven lipids (Supplemen-
tary Table S2). Small molecules such as vitamin E,

stigmasterol, campesterol, and beta-sitosterol that are

essential for human body normal function were also found.
An additional 17 compounds, such as 15 phospholipids and

two natural antioxidants, were also detected.

Anti-nutrient compounds and overdose of the nutrients
are two important nutritious issues of a particular crop. A

common anti-nutrient IP6 was highly present in mature

maize kernel. To reduce the IP content in maize kernel,
breeders either screen for mutants with lower IP6 levels or

transfer recombinant fungal phytase to generate transgenic

maize. Although several low phytic acid mutants (such as
lpa1-1, lpa2-1 and lpa241) have been generated (Raboy

et al. 2000, 2001), their poor agronomic properties pre-

vented their agricultural use. The first transgenic maize
with altered phytic acid in China was developed in 2008 by

overexpressing the Aspergillus niger phyA2 gene (Chen
et al. 2008). However, due to regulatory approval

requirements, commercial use of this transgenic event

awaits. The negative association of IP6 with specific
metabolites [such as alanine, ribose and S-adenosylhomo-

cysteine (SAH)] uncovered in this study may provide

useful information for the breeding of low IP6 maize.
Additionally, high amounts of sorbitol were also found in

maize kernel, which could cause adverse effects on health.

Because sorbitol in food is usually incompletely absorbed
in the normal small intestine, this malabsorption is asso-

ciated with abdominal complaints and diarrhea, and may

act as dietary triggers for clinical symptom of irritable
bowel syndrome (Islam and Sakaguchi 2006; Fernández-

Bañares et al. 2009). As a result, it is critical to make sure

that the content of nutritious substances in maize and
maize derived foods is moderate. Despite the fact that

several qualitative and quantitative methods have been

developed to measure food content and that there already
exists a food composition database for biodiversity by

FAO, it is, to some extent, more complex for people to

know the safety only from food composition data, because
current available data are limited to some targeted

metabolites measured with certain technologies. Therefore,

the non-targeted technology used here could be a prom-
ising method to analyze compositional components for

food safety as a great number of both primary and sec-

ondary metabolites could be qualitatively and/or semi-
quantitatively determined in a high output way. It could

thus provide more comprehensive and more accurate food

compositional and nutritional information for any given
foods than any targeted methods, thus a better safety

assessment.

Fait et al. (2006) performed a combined analysis of the
metabolic processes occurring in Arabidopsis seeds at

different developmental stages of seed development, and

found that seed development and germination in Arabi-
dopsis is associated with temporally distinct metabolic

switches. Primary metabolites such as amino acids, sugar

alcohols and oligosaccharides, played important roles in
the processes of seed vernalization, germination, matura-

tion, and desiccation (Fait et al. 2006; Angelovici et al.

2010). Seed development depends highly on the metabolic
utilization of carbohydrates. Suc is stored at the end of seed
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development concomitantly with the accumulations of

stachyose and raffinose. Glc and Fru are present in the early
developing seed, but disappear as the seed reaches matu-

ration (Handley et al. 1983; Weber et al. 1998). Previous

studies also found that coordinated cellular C/N balance is
important for seed development, and that metabolites such

as Glc, Suc, 2-KG, Glu, Gln, Asp and Asn are important for

the monitoring of C/N balance in plants (Zheng 2009). In
this study, amounts of over 82 % of the detected carbo-

hydrates including Glc, Suc, and 2-KG, were not signifi-
cantly variable among the 14 tested maize lines, which

implied that the C status in carbohydrates was relatively

stable in mature maize kernel. In contrast, levels of the four
C/N monitoring amino acids (Glu, Gln, Asp, and Asn) were

significantly variable among the tested lines, indicating a

high variability of N status in mature maize kernel, which
is likely genetic dependent, because a previous study

indicated that there was a genetic and organ-specific con-

trol of the main steps of N/C metabolism in reproductive
sink organs during the grain-filling period (Cañas et al.

2011). Notably, the highest variability was observed in

lipids, which corroborated a previous study (Voelker and
Kinney 2001). Since lipids and amino acids are two

important forms of carbon storage in many angiosperm

seeds, our result suggested, at the metabolomic level, that
the C status in lipids and amino acids may play an

important role in balancing C/N in mature maize kernel.

The high variability of raffinose detected among all tested
14 maize lines indicated variability of different maize in

their energy storage and response to stresses. Raffinose,

together with stachyose, is reported to be an unessential
sources of energy during soybean seed development

(Dierking and Bilyeu 2009) and responsive to stresses

(Chen and Burris 1990).
Natural variation in compositions and levels of metab-

olites in plants are often observed (Keurentjes et al. 2006),

although the underlying genetic mechanism and its physi-
ological significance remain unclear. In this study, among

significant variable metabolites, lipids were more variable

than amino acids, organic acids, sugars and sugar alcohols.
A recent study on the genome-wide association patterns of

508 diverse inbred maize lines revealed abundant variation

in oil-related genes (Li et al. 2012a). Furthermore,
expression of an oil level associated gene GRMZM2G

439195 (responsible for the conversion from SAM to

5-methylthioadenosine, MTA) was indeed detected in the
transcriptome of mature maize kernel. MTA correlated

positively with linolenate and both metabolites were sig-

nificant different in the 14 maize lines, suggesting a direct
role on metabolic variation due to the genome association.

The natural variability of the maize metabolome in term of

amino acids, lipids, and secondary metabolites, such as Dih
and Cos, reflect the natural variation of the nutritional and

physiological properties of mature maize kernels. Dih is

one antioxidant that could reduce lipid peroxidation and
Cos has been detected in many medicinal plants that pos-

sess anti-carcinogenic, anti-viral, anti-fungal, and immu-

nosuppressive activities (Redzynia et al. 2009; Liu et al.
2011). Trehalose is involved in plant stress tolerance and

the production of seed oil (Ali et al. 2012), and among the

top five highly variable bio-chemicals, four metabolites
(NR, PE, stigmasterol, and 4-HP) were the precursors of

vitamins or nutritious substances useful to humans as food
and feed and helpful for kernel development for maize

itself (Jacobson et al. 1979; Kametani and Furuyama 1987;

Schmid and Ohlrogge 2002).
When focusing particularly on four inbred lines

(Dan340, Chang7-2, Huangzao4 and Ye478) that have

distinct genetic origins, 12 metabolites were found to be
responsible for distinguishing either line from the other

three lines (Supplementary Table S10). Therefore, there

must be significant functional alterations in the metabolism
pathways of these 12 compounds among these four lines.

Take G1P as an example. G1P was the highest variable

metabolite identified between Chang7-2 and Ye478, its
ratio between Ye478 and Chang7-2 was 9.61. Similar to

AT3G02100 in Arabidopsis, the GRMZM2G030821 gene in

maize encodes a UDP-Glycosyltransferase super family
protein that transfers G1P into glucuronate as displayed in

KEGG database. As the level of glucuronate level was

much low in Ye478 where the expression of
GRMZM2G030821 was absent (Lai et al. 2010), the

accumulation of high level of G1P in Ye478 may result

from lack of the expression of GRMZM2G030821. Above
results indicated a clear metabolic pathway alteration

between Ye478 and Chang7-2. Therefore, further investi-

gation into genes and or enzymes involved in the metab-
olism of these 12 metabolites could validate these testable

hypotheses, which may be useful to the identification of

metabolomic biomarkers for breeding use.
The highly positive associations of amino acids with each

other and with other non-amino acid metabolites detected in

maize kernel in this study was in line with a previous
observation in tomato seeds (Toubiana et al. 2012), which

may suggest a conserved role of amino acids in the seed

metabolism. However, the generality of this conclusion
merits further extensive investigation with other plant seeds.

Additional highly positively associated metabolites, such as

the three maltooligosaccharides (maltohexaose, maltopen-
taose, and maltotetraose), represented metabolites that can

be interconverted by enzymatic reactions (Takaha and Smith

1999; van der Maarel et al. 2002). We identified only one
correlation for IAA with myo-inositol, as in agreement with

the literature. As early as in 1969, it was discovered that

about one-half of IAA in maize kernels is present as high
molecular weight esters and the remaining one-half as esters
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of myo-inositol (Ueda and Bandurski 1969). Later, myo-

inositol esters of indole-3-acetic acid were indicated as seed
auxin precursors in maize kernels (Nowacki and Bandurski

1980). Hence, we propose that in mature maize kernels myo-

inositol and IAA is tightly associated, which could play a
vital role in seed development as free IAA is in equilibrium

with its conjugate. Thus, correlation analysis proved to be

helpful for dissection of putative key regulatory elements or
pathways for metabolism regulation.

Correlation analysis of metabolomics data might also help
in discovering novel pathways (Weckwerth and Fiehn 2002).

A previous study with Zymomonas mobilis showed that Glu

and Fru could be converted to sorbitol and sodium gluconate
by two enzymes, gluconolactonase and glucose–fructose

oxidoreductase (Zachariou and Scopes, 1986). There was no

information on these two enzymes in Zea mays in the KEGG
database. In MaizeGDB (http://www.maizegdb.org/), glu-

conolactonase catalyzes the conversion of D-glucono-1,5-

lactone to D-gluconic acid (gluconate) in the absence of
glucose-fructose oxidoreductase. Recently, transcriptome

analysis by digital gene expression (DGE) revealed that

GRMZM2G018082, encoding glucose-fructose oxidoreduc-
tase, is expressed in mature maize kernels. Meanwhile the

ortholog gene of GRMZM2G018082 in Arabidopsis

AT4G09670 has been reported to express at a normal level
(expression value around 400–1,000, similar with that in other

tissues) in Arabidopsis seeds (Schmid et al. 2005). Together

with the highly positive associations (r C 0.8) between Glc
and Fru and gluconate and sorbitol, we assume that there may

be a pathway in maize kernel in which Glc and Fru are con-

verted to sorbitol and sodium gluconate with gluconolacto-
nase and glucose–fructose oxidoreductase, similar to that in

Zymomonas mobilis. However, so far it has not been proved in

this study and merits further investigation. Altogether, net-
works reconstructed in this study from metabolomics data

provided a formal framework for investigating maize kernel

metabolism. Supplemented by biochemical, genetic, and
molecular data, it would help to identify regulatory mecha-

nisms to aid metabolic engineering.

The comprehensive metabolic map constructed in this
study might be useful in maize breeding. Wang et al. (2012)

have built a transcriptional roadmap for maize kernel

development and concluded that it does not only provide
information to better understand the transcriptional network

for kernel development, but might provide strategies to

modify plant chemistry to improve kernel quality and vigor
by genetic engineering. Moussaieff et al. (2013) recently

provided a high-resolution metabolic mapping of Arabi-

dopsis roots with 52 metabolites and relative mRNA
expression of regulators or enzymes in the corresponding

pathways: a novel framework for metabolomics analyses. It

is noteworthy there were 208 metabolites, 400 transcripts
and 68 proteins in the metabolic map constructed in our

study, which, for the first time, covers a relatively compre-

hensive profiling in X-omes (metabolome, transcriptome,
and proteome). Still, there remains an opportunity to

improve our metabolic map with additional x-omic data.

5 Concluding remarks

In summary, our metabolic profiling data revealed a

remarkable metabolic variation among selected maize lines
both in metabolite abundances and the metabolite–metabolite

associations. In addition, a comprehensive metabolic map

was constructed by integrating the transcriptomic, proteomic
and metabolic data. Our effort provides a unique tool for

maize breeding towards improved kernels quality and yield.
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Fernández-Bañares, F., Esteve, M., & Viver, J. M. (2009). Fructose-
sorbitol malabsorption. Current Gastroenterology Reports,
11(5), 368–374.

Fernie, A. R., & Schauer, N. (2009). Metabolomics-assisted breeding:
A viable option for crop improvement? Trends in Genetics, 25,
39–48.
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